Higher integrability for singular doubly nonlinear systems

IF 1 3区 数学 Q1 MATHEMATICS
Kristian Moring, Leah Schätzler, Christoph Scheven
{"title":"Higher integrability for singular doubly nonlinear systems","authors":"Kristian Moring,&nbsp;Leah Schätzler,&nbsp;Christoph Scheven","doi":"10.1007/s10231-024-01443-1","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a local higher integrability result for the spatial gradient of weak solutions to doubly nonlinear parabolic systems whose prototype is </p><div><div><span>$$\\begin{aligned} \\partial _t \\left( |u|^{q-1}u \\right) -{{\\,\\textrm{div}\\,}}\\left( |Du|^{p-2} Du \\right) = {{\\,\\textrm{div}\\,}}\\left( |F|^{p-2} F \\right) \\quad \\text { in } \\Omega _T:= \\Omega \\times (0,T) \\end{aligned}$$</span></div></div><p>with parameters <span>\\(p&gt;1\\)</span> and <span>\\(q&gt;0\\)</span> and <span>\\(\\Omega \\subset {\\mathbb {R}}^n\\)</span>. In this paper, we are concerned with the ranges <span>\\(q&gt;1\\)</span> and <span>\\(p&gt;\\frac{n(q+1)}{n+q+1}\\)</span>. A key ingredient in the proof is an intrinsic geometry that takes both the solution <i>u</i> and its spatial gradient <i>Du</i> into account.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01443-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01443-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a local higher integrability result for the spatial gradient of weak solutions to doubly nonlinear parabolic systems whose prototype is

$$\begin{aligned} \partial _t \left( |u|^{q-1}u \right) -{{\,\textrm{div}\,}}\left( |Du|^{p-2} Du \right) = {{\,\textrm{div}\,}}\left( |F|^{p-2} F \right) \quad \text { in } \Omega _T:= \Omega \times (0,T) \end{aligned}$$

with parameters \(p>1\) and \(q>0\) and \(\Omega \subset {\mathbb {R}}^n\). In this paper, we are concerned with the ranges \(q>1\) and \(p>\frac{n(q+1)}{n+q+1}\). A key ingredient in the proof is an intrinsic geometry that takes both the solution u and its spatial gradient Du into account.

Abstract Image

奇异双非线性系统的高积分性
我们证明了双非线性抛物线系统弱解的空间梯度的局部高可积分性结果,其原型为 $$\begin{aligned}\Partial _t left( |u|^{q-1}u \right) -{{{\textrm{div}\,}}left( |Du|^{p-2} Du \right) = {{\textrm{div}\,}}left( |F|^{p-2} F \right) \quad \text { in }\Omega _T:= \Omega \times (0,T) \end{aligned}$$with parameters \(p>1\) and \(q>0\) and \(\Omega \subset {\mathbb {R}}^n\).在本文中,我们关注的范围是 \(q>1\) and\(p>\frac{n(q+1)}{n+q+1}\).证明的一个关键要素是内在几何,它同时考虑了解 u 及其空间梯度 Du。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信