Anna Shvarts, Rogier Bos, Michiel Doorman, Paul Drijvers
{"title":"Reifying actions into artifacts: process–object duality from an embodied perspective on mathematics learning","authors":"Anna Shvarts, Rogier Bos, Michiel Doorman, Paul Drijvers","doi":"10.1007/s10649-024-10310-y","DOIUrl":null,"url":null,"abstract":"<p>Grasping mathematical objects as related to processes is often considered critical for mathematics understanding. Yet, the ontology of mathematical objects remains under debate. In this paper, we theoretically oppose <i>internalist approaches</i> that claim mental entities as the endpoints of process–object transitions and <i>externalist approaches</i> that stress mathematical artifacts—such as physical manipulatives and formulas—as constituting mathematical objects. We search for a view on process–object duality that overcomes the dualism of mind and body. One such approach is commognition that describes mathematical objects as discursive entities. This paper expands the nature of mathematical objects beyond discourse and highlights the role of learners’ interaction with the environment by adopting ecological onto-epistemology. We develop a functional dynamic systems perspective on process–object duality in mathematics learning emphasizing embodied actions and the re-invention of artifacts’ affordances. As a main result, we reconsider process–object duality as a reification of repetitive actions into a cultural artifact that consists of two steps: (1) forming a new sensory-motor coordination that brings new perception to the fore and (2) crystallizing a new artifact in a mathematical environment that captures this new perception. An empirical example from research on embodied action-based design for trigonometry illustrates our theoretical ideas.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":48107,"journal":{"name":"Educational Studies in Mathematics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Studies in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10649-024-10310-y","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Grasping mathematical objects as related to processes is often considered critical for mathematics understanding. Yet, the ontology of mathematical objects remains under debate. In this paper, we theoretically oppose internalist approaches that claim mental entities as the endpoints of process–object transitions and externalist approaches that stress mathematical artifacts—such as physical manipulatives and formulas—as constituting mathematical objects. We search for a view on process–object duality that overcomes the dualism of mind and body. One such approach is commognition that describes mathematical objects as discursive entities. This paper expands the nature of mathematical objects beyond discourse and highlights the role of learners’ interaction with the environment by adopting ecological onto-epistemology. We develop a functional dynamic systems perspective on process–object duality in mathematics learning emphasizing embodied actions and the re-invention of artifacts’ affordances. As a main result, we reconsider process–object duality as a reification of repetitive actions into a cultural artifact that consists of two steps: (1) forming a new sensory-motor coordination that brings new perception to the fore and (2) crystallizing a new artifact in a mathematical environment that captures this new perception. An empirical example from research on embodied action-based design for trigonometry illustrates our theoretical ideas.
期刊介绍:
Educational Studies in Mathematics presents new ideas and developments of major importance to those working in the field of mathematics education. It seeks to reflect both the variety of research concerns within this field and the range of methods used to study them. It deals with methodological, pedagogical/didactical, political and socio-cultural aspects of teaching and learning of mathematics, rather than with specific programmes for teaching mathematics. Within this range, Educational Studies in Mathematics is open to all research approaches. The emphasis is on high-level articles which are of more than local or national interest.? All contributions to this journal are peer reviewed.