Pre- and post-fire forest canopy height mapping in Southeast Australia through the integration of multi-temporal GEDI data, satellite images, and Convolution Neural Network

IF 3 3区 地球科学 Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Tsung-Chi Chou, Xuan Zhu, Ruth Reef
{"title":"Pre- and post-fire forest canopy height mapping in Southeast Australia through the integration of multi-temporal GEDI data, satellite images, and Convolution Neural Network","authors":"Tsung-Chi Chou, Xuan Zhu, Ruth Reef","doi":"10.1080/01431161.2024.2343429","DOIUrl":null,"url":null,"abstract":"This study leveraged Convolutional Neural Network (CNN) models to estimate canopy height in Southeast Australian forests before and after the 2019–2020 bushfire event, using inputs from Sentinel-1,...","PeriodicalId":14369,"journal":{"name":"International Journal of Remote Sensing","volume":"30 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01431161.2024.2343429","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study leveraged Convolutional Neural Network (CNN) models to estimate canopy height in Southeast Australian forests before and after the 2019–2020 bushfire event, using inputs from Sentinel-1,...
通过整合多时 GEDI 数据、卫星图像和卷积神经网络,绘制澳大利亚东南部火灾前后的林冠高度图
这项研究利用卷积神经网络(CNN)模型,在2019-2020年丛林火灾发生前后估算了澳大利亚东南部森林的树冠高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Remote Sensing
International Journal of Remote Sensing 工程技术-成像科学与照相技术
CiteScore
7.00
自引率
5.90%
发文量
219
审稿时长
4.8 months
期刊介绍: The International Journal of Remote Sensing ( IJRS) is concerned with the theory, science and technology of remote sensing and novel applications of remotely sensed data. The journal’s focus includes remote sensing of the atmosphere, biosphere, cryosphere and the terrestrial earth, as well as human modifications to the earth system. Principal topics include: • Remotely sensed data collection, analysis, interpretation and display. • Surveying from space, air, water and ground platforms. • Imaging and related sensors. • Image processing. • Use of remotely sensed data. • Economic surveys and cost-benefit analyses. • Drones Section: Remote sensing with unmanned aerial systems (UASs, also known as unmanned aerial vehicles (UAVs), or drones).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信