Influence of Dielectric Relaxations of Soil Water on the Temperature Dependence of Soil Permittivity

IF 0.8 4区 物理与天体物理 Q4 OPTICS
A. Yu. Karavayskiy, Yu. I. Lukin
{"title":"Influence of Dielectric Relaxations of Soil Water on the Temperature Dependence of Soil Permittivity","authors":"A. Yu. Karavayskiy,&nbsp;Yu. I. Lukin","doi":"10.1134/S0030400X24700206","DOIUrl":null,"url":null,"abstract":"<p>Using a generalized refractive mixture dielectric model, the influence of the relative permittivity spectra of bound and unbound water in mineral soil on the nature of the temperature dependence of the relative permittivity of natural mineral soil, with a clay fraction content of 41.3%, was studied in the electromagnetic field frequency range from 50 MHz to 15 GHz. The causes of the emergence of intersections in the relative permittivity spectra of mineral soil, obtained at different temperatures but for a sample of the same moisture content, have been studied. It has been proved that the emergence of such an intersection point in the frequency range up to 1.5 GHz is due to the Maxwell–Wagner effect in bound water. The dependences of the frequency of the intersection point of the relative permittivity spectra of mineral soil on the temperature and volumetric content of bound and unbound water have been studied.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"131 12","pages":"1190 - 1199"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X24700206","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using a generalized refractive mixture dielectric model, the influence of the relative permittivity spectra of bound and unbound water in mineral soil on the nature of the temperature dependence of the relative permittivity of natural mineral soil, with a clay fraction content of 41.3%, was studied in the electromagnetic field frequency range from 50 MHz to 15 GHz. The causes of the emergence of intersections in the relative permittivity spectra of mineral soil, obtained at different temperatures but for a sample of the same moisture content, have been studied. It has been proved that the emergence of such an intersection point in the frequency range up to 1.5 GHz is due to the Maxwell–Wagner effect in bound water. The dependences of the frequency of the intersection point of the relative permittivity spectra of mineral soil on the temperature and volumetric content of bound and unbound water have been studied.

Abstract Image

Abstract Image

土壤水的介电弛豫对土壤脆性随温度变化的影响
摘要 利用广义折射混合物介电模型,研究了在 50 MHz 至 15 GHz 电磁场频率范围内,矿质土壤中结合水和非结合水的相对介电率谱对粘土组分含量为 41.3% 的天然矿质土壤相对介电率随温度变化的性质的影响。研究了矿物土壤相对介电常数频谱出现交集的原因,这些频谱是在不同温度下获得的,但样品的含水量相同。研究证明,在高达 1.5 千兆赫的频率范围内出现这种交点是由于结合水的麦克斯韦尔-瓦格纳效应。还研究了矿质土壤相对介电常数频谱交点频率与温度以及结合水和非结合水体积含量的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Spectroscopy
Optics and Spectroscopy 物理-光谱学
CiteScore
1.60
自引率
0.00%
发文量
55
审稿时长
4.5 months
期刊介绍: Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信