{"title":"On the Sound Speed in Multiphase Systems","authors":"S. O. Gladkov","doi":"10.1134/S1063771023601437","DOIUrl":null,"url":null,"abstract":"<div><p>The general dependence of the sound speed has been calculated <span>\\({{c}_{s}}\\)</span> in a two-phase system, such as liquid + gas and gas + liquid, as a function of the concentration <span>\\(x\\)</span> of an additional phase and thermodynamic parameters of the mixture. It is shown that in limiting cases, when the concentration tends to zero or unity, formulas are obtained whose numerical values agree well with the known values for the sound speed in water and air. This formula is generalized to multicomponent systems. The found functional relationship is illustrated graphically <span>\\({{c}_{s}}\\left( x \\right)\\)</span> for the case of a two-phase medium, and its qualitative and quantitative agreement with the results of other authors is shown demonstrated.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 1","pages":"29 - 34"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023601437","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The general dependence of the sound speed has been calculated \({{c}_{s}}\) in a two-phase system, such as liquid + gas and gas + liquid, as a function of the concentration \(x\) of an additional phase and thermodynamic parameters of the mixture. It is shown that in limiting cases, when the concentration tends to zero or unity, formulas are obtained whose numerical values agree well with the known values for the sound speed in water and air. This formula is generalized to multicomponent systems. The found functional relationship is illustrated graphically \({{c}_{s}}\left( x \right)\) for the case of a two-phase medium, and its qualitative and quantitative agreement with the results of other authors is shown demonstrated.
计算了两相系统(如液体+气体和气体+液体)中声速的一般依赖性,它是额外相的浓度(x/)和混合物热力学参数的函数。结果表明,在极限情况下,当浓度趋于零或一的时候,可以得到公式,其数值与水和空气中声速的已知值非常吻合。该公式适用于多组分系统。在两相介质的情况下,以图解的方式说明了所发现的函数关系({{c}_{s}}\left( x \right)\),并证明了它与其他作者的结果在质量和数量上的一致性。
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.