Global Well-Posedness and Convergence Results to a 3D Regularized Boussinesq System in Sobolev Spaces

IF 1.3 4区 数学 Q1 MATHEMATICS
Ridha Selmi, Shahah Almutairi
{"title":"Global Well-Posedness and Convergence Results to a 3D Regularized Boussinesq System in Sobolev Spaces","authors":"Ridha Selmi, Shahah Almutairi","doi":"10.1155/2024/4495266","DOIUrl":null,"url":null,"abstract":"We consider a regularized periodic three-dimensional Boussinesq system. For a mean free initial temperature, we use the coupling between the velocity and temperature to close the energy estimates independently of time. This allows proving the existence of a global in time unique weak solution. Also, we establish that this solution depends continuously on the initial data. Moreover, we prove that this solution converges to a Leray-Hopf weak solution of the three-dimensional Boussinesq system as the regularizing parameter vanishes.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/4495266","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a regularized periodic three-dimensional Boussinesq system. For a mean free initial temperature, we use the coupling between the velocity and temperature to close the energy estimates independently of time. This allows proving the existence of a global in time unique weak solution. Also, we establish that this solution depends continuously on the initial data. Moreover, we prove that this solution converges to a Leray-Hopf weak solution of the three-dimensional Boussinesq system as the regularizing parameter vanishes.
索波列夫空间中三维正则化布森奈斯克系统的全局拟合与收敛结果
我们考虑的是正则化周期性三维布森斯克系统。对于平均自由初始温度,我们利用速度和温度之间的耦合来关闭能量估计,而不受时间的影响。这就证明了在时间上存在一个全局唯一的弱解。同时,我们还确定了这个解连续依赖于初始数据。此外,我们还证明,随着正则化参数的消失,这个解会收敛到三维布辛斯克系统的勒雷-霍普夫弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信