Use of Longitudinal Critically Refracted Waves to Determine Residual and Temperature Stresses in Rails

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
K. V. Kurashkin, A. G. Kirillov, A. V. Gonchar
{"title":"Use of Longitudinal Critically Refracted Waves to Determine Residual and Temperature Stresses in Rails","authors":"K. V. Kurashkin,&nbsp;A. G. Kirillov,&nbsp;A. V. Gonchar","doi":"10.1134/S1063771023600365","DOIUrl":null,"url":null,"abstract":"<div><p>The possibility of using longitudinal critically refracted waves for acoustic strain gauging of longitudinal residual and temperature stresses in rails is studied. The influence of stress and temperature on the propagation velocity of elastic waves in rail steel is analyzed theoretically. An algorithm is presented for determining longitudinal stress in a rail by measuring the propagation time of longitudinal critically refracted waves. The operational principle is described, and the main parameters of an acoustic strain gauge device are presented, in which a differential scheme for measuring the propagation time of longitudinal critically refracted waves is implemented. Longitudinal critically refracted waves that propagate along a rail are emitted and received from the rolling surface of a rail head using contact piezoelectric transducers fixed on the polymethylmethacrylate wedges. The results of acoustomechanical and temperature tests are presented. The measurement errors are calculated. The results of determining the level of residual welding stresses in the head of a new rail are presented. The experimental results are compared with theoretical estimates of the stresses that arise in a rail under the influence of temperature, as well as with available data in the literature on residual stresses in rails.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023600365","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The possibility of using longitudinal critically refracted waves for acoustic strain gauging of longitudinal residual and temperature stresses in rails is studied. The influence of stress and temperature on the propagation velocity of elastic waves in rail steel is analyzed theoretically. An algorithm is presented for determining longitudinal stress in a rail by measuring the propagation time of longitudinal critically refracted waves. The operational principle is described, and the main parameters of an acoustic strain gauge device are presented, in which a differential scheme for measuring the propagation time of longitudinal critically refracted waves is implemented. Longitudinal critically refracted waves that propagate along a rail are emitted and received from the rolling surface of a rail head using contact piezoelectric transducers fixed on the polymethylmethacrylate wedges. The results of acoustomechanical and temperature tests are presented. The measurement errors are calculated. The results of determining the level of residual welding stresses in the head of a new rail are presented. The experimental results are compared with theoretical estimates of the stresses that arise in a rail under the influence of temperature, as well as with available data in the literature on residual stresses in rails.

Abstract Image

Abstract Image

利用纵向临界折射波确定钢轨中的残余应力和温度应力
研究了利用纵向临界折射波对钢轨的纵向残余应力和温度应力进行声学应变测量的可能性。从理论上分析了应力和温度对钢轨弹性波传播速度的影响。介绍了通过测量纵向临界折射波的传播时间来确定钢轨纵向应力的算法。介绍了声学应变计装置的工作原理和主要参数,其中采用了测量纵向临界折射波传播时间的差分方案。使用固定在聚甲基丙烯酸甲酯楔块上的接触式压电传感器从轨头滚动表面发射和接收沿钢轨传播的纵向临界折射波。介绍了声学机械和温度测试的结果。计算了测量误差。介绍了确定新钢轨头部残余焊接应力水平的结果。实验结果与钢轨在温度影响下产生的应力的理论估计值以及钢轨残余应力方面的现有文献数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信