Superfluid fraction tensor of a two-dimensional supersolid

IF 1.5 4区 物理与天体物理 Q3 OPTICS
P B Blakie
{"title":"Superfluid fraction tensor of a two-dimensional supersolid","authors":"P B Blakie","doi":"10.1088/1361-6455/ad41c1","DOIUrl":null,"url":null,"abstract":"We investigate the superfluid fraction of crystalline stationary states within the framework of mean-field Gross–Pitaevskii theory. Our primary focus is on a two-dimensional Bose–Einstein condensate with a non-local soft-core interaction, where the superfluid fraction is described by a rank-2 tensor. We then calculate the superfluid fraction tensor for crystalline states exhibiting triangular, square, and stripe geometries across a broad range of interaction parameters. Factors leading to an anisotropic superfluid fraction tensor are also considered. We also refine the Leggett bounds for the superfluid fraction of the 2D system. We systematically compare these bounds to our full numerical results, and other results in the literature. This work is of direct relevance to other supersolid systems of current interest, such as supersolids produced using dipolar Bose–Einstein condensates.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"49 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad41c1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the superfluid fraction of crystalline stationary states within the framework of mean-field Gross–Pitaevskii theory. Our primary focus is on a two-dimensional Bose–Einstein condensate with a non-local soft-core interaction, where the superfluid fraction is described by a rank-2 tensor. We then calculate the superfluid fraction tensor for crystalline states exhibiting triangular, square, and stripe geometries across a broad range of interaction parameters. Factors leading to an anisotropic superfluid fraction tensor are also considered. We also refine the Leggett bounds for the superfluid fraction of the 2D system. We systematically compare these bounds to our full numerical results, and other results in the literature. This work is of direct relevance to other supersolid systems of current interest, such as supersolids produced using dipolar Bose–Einstein condensates.
二维超固体的超流体分数张量
我们在平均场格罗斯-皮塔耶夫斯基理论的框架内研究了晶体静止态的超流体部分。我们主要关注具有非局部软核相互作用的二维玻色-爱因斯坦凝聚态,其中超流体分数由一个秩2张量描述。然后,我们计算了在广泛的相互作用参数范围内呈现三角形、正方形和条纹状几何结构的晶体态的超流体分数张量。我们还考虑了导致各向异性超流体分数张量的因素。我们还完善了二维系统超流体分数的莱格特边界。我们将这些界限与我们的完整数值结果以及文献中的其他结果进行了系统比较。这项工作与当前关注的其他超固体系统有直接关系,例如使用双极玻色-爱因斯坦凝聚物产生的超固体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信