Coatings with high solar reflectivity: heat build-up in laboratory and real conditions

IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED
Ewa Langer, Małgorzata Zubielewicz, Bartosz Kopyciński
{"title":"Coatings with high solar reflectivity: heat build-up in laboratory and real conditions","authors":"Ewa Langer,&nbsp;Małgorzata Zubielewicz,&nbsp;Bartosz Kopyciński","doi":"10.1007/s11998-024-00935-2","DOIUrl":null,"url":null,"abstract":"<div><p>Excessive heat build-up of painted surfaces due to solar radiation and the resulting increase in interior temperatures is undesirable and even dangerous for roofing, facades, and other structural elements. One way to reduce surface temperature is to apply suitably pigmented organic coatings exhibiting high solar reflectance properties. The use of high solar reflectance pigments in paints resulted in coatings with high total solar reflectance (TSR) values, and thus with the ability to reduce the temperature of the painted substrate. The coatings were tested under laboratory and outdoor conditions on two livestock farms. It was found that the developed coatings exhibit significantly higher TSR values than commercial coatings of the same colors designed for painting roofs. The TSR values do not change when the coatings are exposed to the weather.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1783 - 1793"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00935-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive heat build-up of painted surfaces due to solar radiation and the resulting increase in interior temperatures is undesirable and even dangerous for roofing, facades, and other structural elements. One way to reduce surface temperature is to apply suitably pigmented organic coatings exhibiting high solar reflectance properties. The use of high solar reflectance pigments in paints resulted in coatings with high total solar reflectance (TSR) values, and thus with the ability to reduce the temperature of the painted substrate. The coatings were tested under laboratory and outdoor conditions on two livestock farms. It was found that the developed coatings exhibit significantly higher TSR values than commercial coatings of the same colors designed for painting roofs. The TSR values do not change when the coatings are exposed to the weather.

Abstract Image

Abstract Image

高太阳反射率涂层:实验室和实际条件下的热量积累
对于屋顶、外墙和其他结构部件来说,太阳辐射造成的涂漆表面过多热量积聚以及由此导致的室内温度升高是不可取的,甚至是危险的。降低表面温度的一种方法是使用具有高太阳反射率特性的适当颜料有机涂料。在涂料中使用高太阳反射率颜料可获得高太阳总反射率(TSR)值的涂料,从而能够降低被涂基材的温度。在两个畜牧场的实验室和室外条件下对涂料进行了测试。结果发现,所开发的涂料的 TSR 值明显高于专为涂刷屋顶而设计的相同颜色的商用涂料。当涂料暴露在天气中时,TSR 值不会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信