{"title":"Molecular docking of biologically active vanadium(III) hydroxamates: Synthesis, structural aspects, electrochemical and thermal behavior","authors":"Sonika Sharma, Shubham Sharma, Maridula Thakur, Meena Kumari","doi":"10.1007/s12039-024-02274-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial resistance is a growing threat to all of us worldwide. The need for rapid pharmaceutical solutions is a challenge for chemists. Computer-aided tools and molecular docking provide a speedy root for designing and investigating new metal-based drugs. Given this, the tris(hydroxamato)vanadium(III) complexes of composition [V(HL<sup>1–2</sup>)<sub>3</sub>] (I, II) (HL<sup>1</sup> <span>\\(=\\)</span> 4-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CONHO<sup>−</sup>; HL<sup>2</sup> <span>\\(=\\)</span> 2-Cl-4-NO<sub>2</sub>C<sub>6</sub>H<sub>3</sub>-CONHO<sup>−</sup>) have been synthesized by the reactions of VCl<sub>3</sub> with three equivalents of different potassium hydroxamate ligands in dry methanol. Elemental analyses, molar conductivity, molecular weight determination, magnetic moment measurements and IR, UV-Vis spectral studies, and mass spectrometry have characterized complexes. The magnetic moment and electronic spectra are consistent with the +3 oxidation state of vanadium. Based on physicochemical and spectral techniques, a distorted octahedral geometry around vanadium has been proposed for complexes. The electrochemical behavior of complexes studied by cyclic voltammetry has displayed a quasi-reversible V<sup>IV</sup>/V<sup>III</sup> redox couple. Molecular docking studies were conducted against the Klebsiella pneumoniae modA protein; complexes showed higher binding free energies than free ligands, displaying efficient binding at the protein groove. Therefore, the MIC method has evaluated free ligands and complexes for <i>in vitro</i> antimicrobial activity against bacteria and fungi.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02274-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial resistance is a growing threat to all of us worldwide. The need for rapid pharmaceutical solutions is a challenge for chemists. Computer-aided tools and molecular docking provide a speedy root for designing and investigating new metal-based drugs. Given this, the tris(hydroxamato)vanadium(III) complexes of composition [V(HL1–2)3] (I, II) (HL1\(=\) 4-NO2C6H4CONHO−; HL2\(=\) 2-Cl-4-NO2C6H3-CONHO−) have been synthesized by the reactions of VCl3 with three equivalents of different potassium hydroxamate ligands in dry methanol. Elemental analyses, molar conductivity, molecular weight determination, magnetic moment measurements and IR, UV-Vis spectral studies, and mass spectrometry have characterized complexes. The magnetic moment and electronic spectra are consistent with the +3 oxidation state of vanadium. Based on physicochemical and spectral techniques, a distorted octahedral geometry around vanadium has been proposed for complexes. The electrochemical behavior of complexes studied by cyclic voltammetry has displayed a quasi-reversible VIV/VIII redox couple. Molecular docking studies were conducted against the Klebsiella pneumoniae modA protein; complexes showed higher binding free energies than free ligands, displaying efficient binding at the protein groove. Therefore, the MIC method has evaluated free ligands and complexes for in vitro antimicrobial activity against bacteria and fungi.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.