{"title":"Hybrid origami-linkage vaulted deployable structures: parametric development and form-finding","authors":"Evangelia Vlachaki, Katherine A. Liapi","doi":"10.1007/s11012-024-01802-5","DOIUrl":null,"url":null,"abstract":"<p>The demand for adaptable structures is steadily increasing in contemporary architectural practice. Deployable structures, characterized by their flexibility and versatility, offer innovative solutions across demanding engineering and architectural contexts. Among the various types of deployable structures, two main categories emerge: lattice deployable structures and continuous surface deployable structures. This paper explores the creation of hybrid deployable vaulted structures by incorporating kinetic elements from both deployable structure categories. A combination of rigid thick origami surfaces and retractable structural frames composed of four-bar and scissor-hinged linkages is examined, while both direct and inverse design methodologies are explored. To facilitate the parameterization and kinematic study of the proposed structures, an algorithm is developed within the Rhino Grasshopper visual programming environment, which is then utilized for form-finding and design optimization of the generated deployable vaults. The present study aims to contribute to the evolution of lightweight, kinetic elements for versatile architectural applications. The proposed hybrid deployable structures are designed to adjust to evolving spatial and functional requirements while maintaining structural integrity.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01802-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for adaptable structures is steadily increasing in contemporary architectural practice. Deployable structures, characterized by their flexibility and versatility, offer innovative solutions across demanding engineering and architectural contexts. Among the various types of deployable structures, two main categories emerge: lattice deployable structures and continuous surface deployable structures. This paper explores the creation of hybrid deployable vaulted structures by incorporating kinetic elements from both deployable structure categories. A combination of rigid thick origami surfaces and retractable structural frames composed of four-bar and scissor-hinged linkages is examined, while both direct and inverse design methodologies are explored. To facilitate the parameterization and kinematic study of the proposed structures, an algorithm is developed within the Rhino Grasshopper visual programming environment, which is then utilized for form-finding and design optimization of the generated deployable vaults. The present study aims to contribute to the evolution of lightweight, kinetic elements for versatile architectural applications. The proposed hybrid deployable structures are designed to adjust to evolving spatial and functional requirements while maintaining structural integrity.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.