{"title":"Skew-morphisms of elementary abelian 𝑝-groups","authors":"Shaofei Du, Wenjuan Luo, Hao Yu, Junyang Zhang","doi":"10.1515/jgth-2022-0092","DOIUrl":null,"url":null,"abstract":"A skew-morphism of a finite group 𝐺 is a permutation 𝜎 on 𝐺 fixing the identity element, and for which there exists an integer-valued function 𝜋 on 𝐺 such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mi>π</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0001.png\"/> <jats:tex-math>\\sigma(xy)=\\sigma(x)\\sigma^{\\pi(x)}(y)</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0002.png\"/> <jats:tex-math>x,y\\in G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. It is known that, for a given skew-morphism 𝜎 of 𝐺, the product of the left regular representation of 𝐺 with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">⟨</m:mo> <m:mi>σ</m:mi> <m:mo stretchy=\"false\">⟩</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0003.png\"/> <jats:tex-math>\\langle\\sigma\\rangle</jats:tex-math> </jats:alternatives> </jats:inline-formula> forms a permutation group on 𝐺, called a skew-product group of 𝐺. In this paper, we study the skew-product groups 𝑋 of elementary abelian 𝑝-groups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0004.png\"/> <jats:tex-math>\\mathbb{Z}_{p}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that 𝑋 has a normal Sylow 𝑝-subgroup and determine the structure of 𝑋. In particular, we prove that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msubsup> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">⊲</m:mo> <m:mi>X</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0005.png\"/> <jats:tex-math>\\mathbb{Z}_{p}^{n}\\lhd X</jats:tex-math> </jats:alternatives> </jats:inline-formula> if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0006.png\"/> <jats:tex-math>p=2</jats:tex-math> </jats:alternatives> </jats:inline-formula> and either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msubsup> <m:mo lspace=\"0.222em\" rspace=\"0.222em\">⊲</m:mo> <m:mi>X</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0005.png\"/> <jats:tex-math>\\mathbb{Z}_{p}^{n}\\lhd X</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>X</m:mi> </m:msub> <m:mo>≅</m:mo> <m:msubsup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>p</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0008.png\"/> <jats:tex-math>(\\mathbb{Z}_{p}^{n})_{X}\\cong\\mathbb{Z}_{p}^{n-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if 𝑝 is an odd prime. As an application, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0009.png\"/> <jats:tex-math>n\\leq 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that 𝑋 is isomorphic to a subgroup of the affine group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>AGL</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0010.png\"/> <jats:tex-math>\\mathrm{AGL}(n,p)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and enumerate the number of skew-morphisms of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"double-struck\">Z</m:mi> <m:mi>p</m:mi> <m:mi>n</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2022-0092_ineq_0004.png\"/> <jats:tex-math>\\mathbb{Z}_{p}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A skew-morphism of a finite group 𝐺 is a permutation 𝜎 on 𝐺 fixing the identity element, and for which there exists an integer-valued function 𝜋 on 𝐺 such that σ(xy)=σ(x)σπ(x)(y)\sigma(xy)=\sigma(x)\sigma^{\pi(x)}(y) for all x,y∈Gx,y\in G. It is known that, for a given skew-morphism 𝜎 of 𝐺, the product of the left regular representation of 𝐺 with ⟨σ⟩\langle\sigma\rangle forms a permutation group on 𝐺, called a skew-product group of 𝐺. In this paper, we study the skew-product groups 𝑋 of elementary abelian 𝑝-groups Zpn\mathbb{Z}_{p}^{n}. We prove that 𝑋 has a normal Sylow 𝑝-subgroup and determine the structure of 𝑋. In particular, we prove that Zpn⊲X\mathbb{Z}_{p}^{n}\lhd X if p=2p=2 and either Zpn⊲X\mathbb{Z}_{p}^{n}\lhd X or (Zpn)X≅Zpn−1(\mathbb{Z}_{p}^{n})_{X}\cong\mathbb{Z}_{p}^{n-1} if 𝑝 is an odd prime. As an application, for n≤3n\leq 3, we prove that 𝑋 is isomorphic to a subgroup of the affine group AGL(n,p)\mathrm{AGL}(n,p) and enumerate the number of skew-morphisms of Zpn\mathbb{Z}_{p}^{n}.
有限群𝐺的偏斜形变是在𝐺上固定同一元素的置换𝜎、对于所有的 x , y ∈ G x,y\in G 而言,在𝐺上存在一个整数值函数 𝜋 ,使得 σ ( x y ) = σ ( x ) σ π ( x ) ( y ) \sigma(xy)=\sigma(x)\sigma^{\pi(x)}(y) 。众所周知,对于𝐺的给定偏斜变形𝜎,𝐺的左正则表达与⟨ σ ⟩ \langle\sigma\rangle 的乘积形成了一个关于𝐺的置换群,称为𝐺的偏斜-乘积群。本文研究基本无边𝑝群 Z p n \mathbb{Z}_{p}^{n} 的偏积群𝑋。我们证明了𝑋 有一个正常的 Sylow 𝑝 子群,并确定了 𝑋 的结构。特别是我们证明,如果 p = 2 p=2 并且 Z p n ⊲ X \mathbb{Z}_{p}^{n}\lhd X \或 ( Z p n ) X ≅ Z p n - 1 (\mathbb{Z}_{p}^{n})_{X}\cong\mathbb{Z}_{p}^{n-1} 如果𝑝是奇素数。作为应用,对于 n ≤ 3 n\leq 3 ,我们证明𝑋 与仿射群 AGL ( n , p ) 的一个子群 \mathrm{AGL}(n,p) 同构,并列举了 Z p n \mathbb{Z}_{p}^{n} 的偏斜变形数。