Dependence of the Charge State of a Light Ion Beam in Matter on Particle Velocity

IF 0.5 Q4 PHYSICS, CONDENSED MATTER
N. N. Mikheev, I. Zh. Bezbakh
{"title":"Dependence of the Charge State of a Light Ion Beam in Matter on Particle Velocity","authors":"N. N. Mikheev, I. Zh. Bezbakh","doi":"10.1134/s1027451024020125","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>The results of applying the statistics of a discrete multiple scattering process to analytically describe the dependence of the charge state of light ions in matter on particle velocity are presented. It is shown that the use of a technique based on taking into account the dependence of the charge state of the beam ions on the ratio of the ion velocity to the minimum velocity of the electrons of the substance makes it possible to calculate the stopping power of the substance for lithium, beryllium, boron, and carbon ions of medium and low energies corresponding to the experimental results.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1027451024020125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The results of applying the statistics of a discrete multiple scattering process to analytically describe the dependence of the charge state of light ions in matter on particle velocity are presented. It is shown that the use of a technique based on taking into account the dependence of the charge state of the beam ions on the ratio of the ion velocity to the minimum velocity of the electrons of the substance makes it possible to calculate the stopping power of the substance for lithium, beryllium, boron, and carbon ions of medium and low energies corresponding to the experimental results.

Abstract Image

物质中轻离子束的电荷状态与粒子速度的关系
摘要 介绍了应用离散多重散射过程统计来分析描述物质中轻离子电荷状态对粒子速度依赖性的结果。结果表明,使用基于离子束电荷状态对离子速度与物质电子最小速度之比的依赖性的技术,可以计算出与实验结果相对应的中低能量的锂、铍、硼和碳离子的物质阻挡力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信