Direct, simple and efficient computation of all components of the virtual-casing magnetic field in axisymmetric geometries with Kapur–Rokhlin quadrature
{"title":"Direct, simple and efficient computation of all components of the virtual-casing magnetic field in axisymmetric geometries with Kapur–Rokhlin quadrature","authors":"Evan Toler, A.J. Cerfon, D. Malhotra","doi":"10.1017/s0022377824000527","DOIUrl":null,"url":null,"abstract":"<p>In a recent publication (Toler <span>et al.</span>, <span>J. Plasma Phys.</span>, vol. 89, issue 2, 2023, p. 905890210), we demonstrated that for axisymmetric geometries, the Kapur–Rokhlin quadrature rule provided an efficient and high-order accurate method for computing the normal component, on the plasma surface, of the magnetic field due to the toroidal current flowing in the plasma, via the virtual-casing principle. The calculation was indirect, as it required the prior computation of the magnetic vector potential from the virtual-casing principle, followed by the computation of its tangential derivative by Fourier differentiation, to obtain the normal component of the magnetic field. Our approach did not provide the other components of the virtual-casing magnetic field. In this letter, we show that a more direct and more general approach is available for the computation of the virtual-casing magnetic field. The Kapur–Rokhlin quadrature rule accurately calculates the principal value integrals in the expression for all the components of the magnetic field on the plasma boundary, and the numerical error converges at a rate nearly as high as the indirect method we presented previously.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"36 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000527","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent publication (Toler et al., J. Plasma Phys., vol. 89, issue 2, 2023, p. 905890210), we demonstrated that for axisymmetric geometries, the Kapur–Rokhlin quadrature rule provided an efficient and high-order accurate method for computing the normal component, on the plasma surface, of the magnetic field due to the toroidal current flowing in the plasma, via the virtual-casing principle. The calculation was indirect, as it required the prior computation of the magnetic vector potential from the virtual-casing principle, followed by the computation of its tangential derivative by Fourier differentiation, to obtain the normal component of the magnetic field. Our approach did not provide the other components of the virtual-casing magnetic field. In this letter, we show that a more direct and more general approach is available for the computation of the virtual-casing magnetic field. The Kapur–Rokhlin quadrature rule accurately calculates the principal value integrals in the expression for all the components of the magnetic field on the plasma boundary, and the numerical error converges at a rate nearly as high as the indirect method we presented previously.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.