{"title":"Who makes open source code? The hybridisation of commercial and open source practices","authors":"Peter Mehler, Eva Iris Otto, Anna Sapienza","doi":"10.1140/epjds/s13688-024-00475-0","DOIUrl":null,"url":null,"abstract":"<p>While Free and Open Source (F/OSS) coding has traditionally been described as a separate commons linked to values of openness and sharing, recent research suggests an increasing integration of private corporations into F/OSS practices, blurring the boundaries between F/OSS and commodified coding. However, there is a dearth of empirical, and especially quantitative studies exploring this phenomenon. To address this gap, we model the power dynamics and infrastructural aspects of software production within GitHub, a central hub for F/OSS development, using a large-scale, directed network. Using various network statistics, we detect the ecosystem’s most impactful actors and find a nuanced picture of the influence of individuals, open source organizations, and private corporations in F/OSS practices. We find that the majority of public repositories on GitHub depend on a small core of specialized repositories and users. In accordance with expectations, individuals and open source organizations are more prevalent in this core of elite GitHub users, however, we also find a significant amount of private organizations with an indirect, yet consistent influence within GitHub. In addition, we find that directly influential individuals tend to facilitate sponsorship methods more often than indirectly or non-influential individuals. Our research highlights a hybridization of F/OSS and sheds light on the complex interplay between influence, power, and code production in the multi-language dependency ecosystem of GitHub.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"61 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00475-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
While Free and Open Source (F/OSS) coding has traditionally been described as a separate commons linked to values of openness and sharing, recent research suggests an increasing integration of private corporations into F/OSS practices, blurring the boundaries between F/OSS and commodified coding. However, there is a dearth of empirical, and especially quantitative studies exploring this phenomenon. To address this gap, we model the power dynamics and infrastructural aspects of software production within GitHub, a central hub for F/OSS development, using a large-scale, directed network. Using various network statistics, we detect the ecosystem’s most impactful actors and find a nuanced picture of the influence of individuals, open source organizations, and private corporations in F/OSS practices. We find that the majority of public repositories on GitHub depend on a small core of specialized repositories and users. In accordance with expectations, individuals and open source organizations are more prevalent in this core of elite GitHub users, however, we also find a significant amount of private organizations with an indirect, yet consistent influence within GitHub. In addition, we find that directly influential individuals tend to facilitate sponsorship methods more often than indirectly or non-influential individuals. Our research highlights a hybridization of F/OSS and sheds light on the complex interplay between influence, power, and code production in the multi-language dependency ecosystem of GitHub.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.