Comparison of earthquake location parameters determined using grid search and manta ray foraging optimization

IF 2.3 4区 地球科学
Aykut Tunçel
{"title":"Comparison of earthquake location parameters determined using grid search and manta ray foraging optimization","authors":"Aykut Tunçel","doi":"10.1007/s11600-024-01359-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study compared earthquake location estimation using grid search and manta ray foraging optimization algorithm for synthetic and real earthquakes data from Van, Turkey. Both locating methods worked well, and they achieved similar results. The horizontal coordinates (latitude and longitude) of the earthquake were obtained successfully with both methods, from the inversion of the arrival times calculated from the noisy and noise-free synthetic earthquake data. However, there was some deviation in depth parameter for the noisy data. The location parameters obtained from the inversion of the real earthquake data using grid search and manta ray foraging optimization methods were in accordance with the solutions presented in previous studies. The depth parameters for the Van earthquakes did not fully match those in the previous studies, possibly due to differences in crustal velocity models. The depth parameters obtained for both Van earthquakes using both methods performed in this study are self-consistent at around 24 km. In addition, Disaster and Emergency Management Presidency and German Research Centre seismology centres also reached depth solutions near those in this study. The grid search method has some disadvantages compared with the manta ray foraging method, as it must be applied gradually, and delays reaching a solution. The manta ray foraging method is an easy, fast way to determine the kinematic location of earthquake hypocentres.</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"72 4","pages":"2581 - 2596"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-024-01359-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study compared earthquake location estimation using grid search and manta ray foraging optimization algorithm for synthetic and real earthquakes data from Van, Turkey. Both locating methods worked well, and they achieved similar results. The horizontal coordinates (latitude and longitude) of the earthquake were obtained successfully with both methods, from the inversion of the arrival times calculated from the noisy and noise-free synthetic earthquake data. However, there was some deviation in depth parameter for the noisy data. The location parameters obtained from the inversion of the real earthquake data using grid search and manta ray foraging optimization methods were in accordance with the solutions presented in previous studies. The depth parameters for the Van earthquakes did not fully match those in the previous studies, possibly due to differences in crustal velocity models. The depth parameters obtained for both Van earthquakes using both methods performed in this study are self-consistent at around 24 km. In addition, Disaster and Emergency Management Presidency and German Research Centre seismology centres also reached depth solutions near those in this study. The grid search method has some disadvantages compared with the manta ray foraging method, as it must be applied gradually, and delays reaching a solution. The manta ray foraging method is an easy, fast way to determine the kinematic location of earthquake hypocentres.

Abstract Image

利用网格搜索和蝠鲼觅食优化确定的地震位置参数比较
本研究比较了使用网格搜索和蝠鲼觅食优化算法对土耳其凡市的合成地震数据和真实地震数据进行地震位置估计的方法。两种定位方法都很有效,取得了相似的结果。两种方法都能通过对有噪声和无噪声合成地震数据计算出的到达时间进行反演,成功获得地震的水平坐标(经度和纬度)。然而,噪声数据的深度参数存在一些偏差。使用网格搜索和蝠鲼觅食优化方法对真实地震数据进行反演得到的位置参数与之前研究中提出的解决方案一致。Van 地震的深度参数与之前的研究不完全一致,这可能是由于地壳速度模型的差异。本研究中使用两种方法获得的凡尔赛地震深度参数在 24 千米左右是自洽的。此外,灾害与应急管理总统府和德国研究中心地震学中心也得出了接近本研究的深度解。与蝠鲼觅食法相比,网格搜索法有一些缺点,因为它必须逐步应用,会延迟求解时间。鳐鱼觅食法是确定地震次中心运动学位置的一种简便、快速的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geophysica
Acta Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.80
自引率
13.00%
发文量
251
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信