Gidong Kim, Junho Lee, Seunghyun Kim, Yongjoon Kang, Jun-Yong Park, Sang-Woo Song
{"title":"Evaluation of Sensitization Behaviors on the Heat-Affected Zone of Austenitic Stainless Steel Weld by Thermal Cycles of Actual Multi-pass Welding","authors":"Gidong Kim, Junho Lee, Seunghyun Kim, Yongjoon Kang, Jun-Yong Park, Sang-Woo Song","doi":"10.1007/s12540-024-01679-9","DOIUrl":null,"url":null,"abstract":"<div><p>The sensitization behavior of the welding heat affected zone (HAZ) in austenitic stainless steels (SSs) was investigated through simulated thermal cycles emulating actual multi-pass welding processes using the Gleeble simulator. The tests were performed with austenitic SSs, considering carbon contents, heat input, and distance from the fusion line to determine the thermal cycle conditions of the HAZ. Higher carbon content led to increased sensitization (degree of sensitization, DOS) values, while the influence of the thermal cycle in the final weld pass was that even though it was rapidly heated to over 1000 °C and cooled at a rapid rate, the DOS value decreased due to partial carbide dissolution and chromium diffusion. Therefore, effective management of the final thermal cycle in the HAZ contributes to improved intergranular stress corrosion cracking resistance. Even with prolonged exposure of the HAZ to the sensitization region, the discovery that corrosion resistance improves when the final heating cycle reaches 1000 °C underscores the importance of HAZ heat cycle management and provides valuable insights for materials engineering and industrial applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 10","pages":"2655 - 2667"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12540-024-01679-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01679-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sensitization behavior of the welding heat affected zone (HAZ) in austenitic stainless steels (SSs) was investigated through simulated thermal cycles emulating actual multi-pass welding processes using the Gleeble simulator. The tests were performed with austenitic SSs, considering carbon contents, heat input, and distance from the fusion line to determine the thermal cycle conditions of the HAZ. Higher carbon content led to increased sensitization (degree of sensitization, DOS) values, while the influence of the thermal cycle in the final weld pass was that even though it was rapidly heated to over 1000 °C and cooled at a rapid rate, the DOS value decreased due to partial carbide dissolution and chromium diffusion. Therefore, effective management of the final thermal cycle in the HAZ contributes to improved intergranular stress corrosion cracking resistance. Even with prolonged exposure of the HAZ to the sensitization region, the discovery that corrosion resistance improves when the final heating cycle reaches 1000 °C underscores the importance of HAZ heat cycle management and provides valuable insights for materials engineering and industrial applications.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.