Holomorphic extension in holomorphic fiber bundles with (1, 0)-compactifiable fiber

IF 1 3区 数学 Q1 MATHEMATICS
Sergey Feklistov
{"title":"Holomorphic extension in holomorphic fiber bundles with (1, 0)-compactifiable fiber","authors":"Sergey Feklistov","doi":"10.1007/s10231-023-01412-0","DOIUrl":null,"url":null,"abstract":"<div><p>We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves <span>\\(R^{\\bullet }\\phi _{!}\\mathcal {O}\\)</span> for the structure sheaf <span>\\(\\mathcal {O}\\)</span> on the total space of a holomorphic fiber bundle <span>\\(\\phi \\)</span> has canonical topology structures. Using the standard Čech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf <span>\\(R^{1}\\phi _{!}\\mathcal {O}\\)</span> and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1, 0)-compactifiable fibers.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01412-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves \(R^{\bullet }\phi _{!}\mathcal {O}\) for the structure sheaf \(\mathcal {O}\) on the total space of a holomorphic fiber bundle \(\phi \) has canonical topology structures. Using the standard Čech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf \(R^{1}\phi _{!}\mathcal {O}\) and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1, 0)-compactifiable fibers.

Abstract Image

具有(1, 0)可压缩纤维的全态纤维束中的全态扩展
我们利用具有紧凑支撑的剪子同调群的勒雷谱序列得到了一个消失结果。在全形纤维束(\phi \)的总空间上,结构剪子(\mathcal {O}\)的剪子秆((R^{\bullet }\phi _{!}\mathcal {O}\)具有规范拓扑结构。利用标准的切赫论证,我们证明了在这个簇上的 QDFS 拓扑的密度稃。特别是,我们得到了具有斯坦因纤维的全形纤维束的消失结果。利用库内特公式、剪子(R^{1}\phi _{! }\mathcal {O}\)秆上的归纳拓扑学(关于空间对)的性质以及哈托格斯现象的同调准则,我们得到了关于具有(1, 0)可压缩纤维的全纯纤维束总空间的哈托格斯现象的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信