{"title":"Holomorphic extension in holomorphic fiber bundles with (1, 0)-compactifiable fiber","authors":"Sergey Feklistov","doi":"10.1007/s10231-023-01412-0","DOIUrl":null,"url":null,"abstract":"<div><p>We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves <span>\\(R^{\\bullet }\\phi _{!}\\mathcal {O}\\)</span> for the structure sheaf <span>\\(\\mathcal {O}\\)</span> on the total space of a holomorphic fiber bundle <span>\\(\\phi \\)</span> has canonical topology structures. Using the standard Čech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf <span>\\(R^{1}\\phi _{!}\\mathcal {O}\\)</span> and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1, 0)-compactifiable fibers.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01412-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use the Leray spectral sequence for the sheaf cohomology groups with compact supports to obtain a vanishing result. The stalks of sheaves \(R^{\bullet }\phi _{!}\mathcal {O}\) for the structure sheaf \(\mathcal {O}\) on the total space of a holomorphic fiber bundle \(\phi \) has canonical topology structures. Using the standard Čech argument we prove a density lemma for QDFS-topology on this stalks. In particular, we obtain a vanishing result for holomorphic fiber bundles with Stein fibers. Using Künnet formulas, properties of an inductive topology (with respect to the pair of spaces) on the stalks of the sheaf \(R^{1}\phi _{!}\mathcal {O}\) and a cohomological criterion for the Hartogs phenomenon we obtain the main result on the Hartogs phenomenon for the total space of holomorphic fiber bundles with (1, 0)-compactifiable fibers.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.