{"title":"Variational inequality solutions and finite stopping time for a class of shear-thinning flows","authors":"Laurent Chupin, Nicolae Cîndea, Geoffrey Lacour","doi":"10.1007/s10231-024-01457-9","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to study the existence of a finite stopping time for solutions in the form of variational inequality to fluid flows following a power law (or Ostwald–DeWaele law) in dimension <span>\\(N \\in \\{2,3\\}\\)</span>. We first establish the existence of solutions for generalized Newtonian flows, valid for viscous stress tensors associated with the usual laws such as Ostwald–DeWaele, Carreau–Yasuda, Herschel–Bulkley and Bingham, but also for cases where the viscosity coefficient satisfies a more atypical (logarithmic) form. To demonstrate the existence of such solutions, we proceed by applying a nonlinear Galerkin method with a double regularization on the viscosity coefficient. We then establish the existence of a finite stopping time for threshold fluids or shear-thinning power-law fluids, i.e. formally such that the viscous stress tensor is represented by a <i>p</i>-Laplacian for the symmetrized gradient for <span>\\(p \\in [1,2)\\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01457-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study the existence of a finite stopping time for solutions in the form of variational inequality to fluid flows following a power law (or Ostwald–DeWaele law) in dimension \(N \in \{2,3\}\). We first establish the existence of solutions for generalized Newtonian flows, valid for viscous stress tensors associated with the usual laws such as Ostwald–DeWaele, Carreau–Yasuda, Herschel–Bulkley and Bingham, but also for cases where the viscosity coefficient satisfies a more atypical (logarithmic) form. To demonstrate the existence of such solutions, we proceed by applying a nonlinear Galerkin method with a double regularization on the viscosity coefficient. We then establish the existence of a finite stopping time for threshold fluids or shear-thinning power-law fluids, i.e. formally such that the viscous stress tensor is represented by a p-Laplacian for the symmetrized gradient for \(p \in [1,2)\).
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.