An extension result for (LB)-spaces and the surjectivity of tensorized mappings

IF 1 3区 数学 Q1 MATHEMATICS
Andreas Debrouwere, Lenny Neyt
{"title":"An extension result for (LB)-spaces and the surjectivity of tensorized mappings","authors":"Andreas Debrouwere,&nbsp;Lenny Neyt","doi":"10.1007/s10231-023-01420-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study an extension problem for continuous linear maps in the setting of (<i>LB</i>)-spaces. More precisely, we characterize the pairs (<i>E</i>, <i>Z</i>), where <i>E</i> is a locally complete space with a fundamental sequence of bounded sets and <i>Z</i> is an (<i>LB</i>)-space, such that for every exact sequence of (<i>LB</i>)-spaces </p><div><div><img></div></div><p>the map </p><div><div><span>$$\\begin{aligned} L(Y,E) \\rightarrow L(X, E), ~ T \\mapsto T \\circ \\iota \\end{aligned}$$</span></div></div><p>is surjective, meaning that each continuous linear map <span>\\(X \\rightarrow E\\)</span> can be extended to a continuous linear map <span>\\(Y \\rightarrow E\\)</span> via <span>\\(\\iota \\)</span>, under some mild conditions on <i>E</i> or <i>Z</i> (e.g. one of them is nuclear). We use our extension result to obtain sufficient conditions for the surjectivity of tensorized maps between Fréchet-Schwartz spaces. As an application of the latter, we study vector-valued Eidelheit type problems. Our work is inspired by and extends results of Vogt [24].</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01420-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study an extension problem for continuous linear maps in the setting of (LB)-spaces. More precisely, we characterize the pairs (EZ), where E is a locally complete space with a fundamental sequence of bounded sets and Z is an (LB)-space, such that for every exact sequence of (LB)-spaces

the map

$$\begin{aligned} L(Y,E) \rightarrow L(X, E), ~ T \mapsto T \circ \iota \end{aligned}$$

is surjective, meaning that each continuous linear map \(X \rightarrow E\) can be extended to a continuous linear map \(Y \rightarrow E\) via \(\iota \), under some mild conditions on E or Z (e.g. one of them is nuclear). We use our extension result to obtain sufficient conditions for the surjectivity of tensorized maps between Fréchet-Schwartz spaces. As an application of the latter, we study vector-valued Eidelheit type problems. Our work is inspired by and extends results of Vogt [24].

Abstract Image

(LB)空间的扩展结果和张量映射的可射性
我们研究的是连续线性映射在(LB)空间中的扩展问题。更准确地说,我们描述了一对(E, Z),其中 E 是具有有界集基本序列的局部完全空间,Z 是一个(LB)空间,这样对于每一个(LB)空间的精确序列,映射 $$\begin{aligned}L(Y,E) \rightarrow L(X, E), ~ T \mapsto T \circ \iota \end{aligned}$$是投射性的,这意味着每个连续线性映射(X \rightarrow E)都可以通过 \(\iota \)扩展到连续线性映射(Y \rightarrow E),条件是在E或Z上有一些温和的条件(例如其中一个是核)。我们利用我们的扩展结果来获得弗雷谢特-施瓦茨空间之间张量映射的可射性的充分条件。作为后者的应用,我们研究了向量值艾德海特类型问题。我们的工作受到 Vogt [24] 结果的启发,并对其进行了扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信