Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives

IF 6.1 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Shan-Shan Yang, Wei-Min Wu, Federica Bertocchini, Mark Eric Benbow, Suja P. Devipriya, Hyung Joon Cha, Bo-Yu Peng, Meng-Qi Ding, Lei He, Mei-Xi Li, Chen-Hao Cui, Shao-Nan Shi, Han-Jun Sun, Ji-Wei Pang, Defu He, Yalei Zhang, Jun Yang, Deyi Hou, De-Feng Xing, Nan-Qi Ren, Jie Ding, Craig S. Criddle
{"title":"Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives","authors":"Shan-Shan Yang, Wei-Min Wu, Federica Bertocchini, Mark Eric Benbow, Suja P. Devipriya, Hyung Joon Cha, Bo-Yu Peng, Meng-Qi Ding, Lei He, Mei-Xi Li, Chen-Hao Cui, Shao-Nan Shi, Han-Jun Sun, Ji-Wei Pang, Defu He, Yalei Zhang, Jun Yang, Deyi Hou, De-Feng Xing, Nan-Qi Ren, Jie Ding, Craig S. Criddle","doi":"10.1007/s11783-024-1838-x","DOIUrl":null,"url":null,"abstract":"<p>Insects damaging and penetrating plastic packaged materials has been reported since the 1950s. Radical innovation breakthroughs of plastic biodegradation have been initiated since the discovery of biodegradation of plastics by <i>Tenebrio molitor</i> larvae in 2015 followed by <i>Galleria mellonella</i> in 2017. Here we review updated studies on the insect-mediated biodegradation of plastics. Plastic biodegradation by insect larvae, mainly by some species of darkling beetles (Tenebrionidae) and pyralid moths (Pyralidae) is currently a highly active and potentially transformative area of research. Over the past eight years, publications have increased explosively, including discoveries of the ability of different insect species to biodegrade plastics, biodegradation performance, and the contribution of host and microbiomes, impacts of polymer types and their physic-chemical properties, and responsible enzymes secreted by the host and gut microbes. To date, almost all major plastics including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PUR), and polystyrene (PS) can be biodegraded by <i>T. molitor</i> and ten other insect species representing the Tenebrionidae and Pyralidae families. The biodegradation processes are symbiotic reactions or performed by synergistic efforts of both host and gut-microbes to rapidly depolymerize and biodegrade plastics with hourly half-lives. The digestive ezymens and bioreagents screted by the insects play an essential role in plasatic biodegradation in certain species of Tenebrionidae and Pyralidae families. New research on the insect itself, gut microbiomes, transcriptomes, proteomes and metabolomes has evaluated the mechanisms of plastic biodegradation in insects. We conclude this review by discussing future research perspectives on insect-mediated biodegradation of plastics.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":"27 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1838-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Insects damaging and penetrating plastic packaged materials has been reported since the 1950s. Radical innovation breakthroughs of plastic biodegradation have been initiated since the discovery of biodegradation of plastics by Tenebrio molitor larvae in 2015 followed by Galleria mellonella in 2017. Here we review updated studies on the insect-mediated biodegradation of plastics. Plastic biodegradation by insect larvae, mainly by some species of darkling beetles (Tenebrionidae) and pyralid moths (Pyralidae) is currently a highly active and potentially transformative area of research. Over the past eight years, publications have increased explosively, including discoveries of the ability of different insect species to biodegrade plastics, biodegradation performance, and the contribution of host and microbiomes, impacts of polymer types and their physic-chemical properties, and responsible enzymes secreted by the host and gut microbes. To date, almost all major plastics including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PUR), and polystyrene (PS) can be biodegraded by T. molitor and ten other insect species representing the Tenebrionidae and Pyralidae families. The biodegradation processes are symbiotic reactions or performed by synergistic efforts of both host and gut-microbes to rapidly depolymerize and biodegrade plastics with hourly half-lives. The digestive ezymens and bioreagents screted by the insects play an essential role in plasatic biodegradation in certain species of Tenebrionidae and Pyralidae families. New research on the insect itself, gut microbiomes, transcriptomes, proteomes and metabolomes has evaluated the mechanisms of plastic biodegradation in insects. We conclude this review by discussing future research perspectives on insect-mediated biodegradation of plastics.

Abstract Image

昆虫生物降解塑料的根本性创新突破:历史、现在和未来展望
昆虫对塑料包装材料的破坏和穿透早在 20 世纪 50 年代就有报道。自 2015 年发现褐飞虱幼虫对塑料的生物降解作用以来,塑料生物降解领域开始了根本性的创新突破。在此,我们回顾了有关昆虫介导的塑料生物降解的最新研究。目前,昆虫幼虫(主要是一些种类的暗纹甲虫(Tenebrionidae)和吡蚜蛾(Pyralidae))对塑料的生物降解是一个高度活跃且具有潜在变革意义的研究领域。在过去的八年里,相关研究的论文数量呈爆炸式增长,其中包括不同昆虫物种生物降解塑料的能力、生物降解性能、宿主和微生物组的贡献、聚合物类型及其物理化学特性的影响、宿主和肠道微生物分泌的责任酶等方面的发现。迄今为止,几乎所有主要塑料,包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚对苯二甲酸乙二酯(PET)、聚氨酯(PUR)和聚苯乙烯(PS),都能被褐飞虱和代表天牛科(Tenebrionidae)和吡蚜科(Pyralidae)的其他十种昆虫生物降解。生物降解过程是一种共生反应,或者是通过宿主和肠道微生物的协同作用来快速解聚和生物降解塑料,半衰期为数小时。昆虫分泌的消化酶和生物试剂在天牛科和稗科某些物种的塑料生物降解过程中发挥了重要作用。对昆虫本身、肠道微生物组、转录组、蛋白质组和代谢组的新研究评估了昆虫的塑料生物降解机制。最后,我们将讨论昆虫介导的塑料生物降解的未来研究前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Environmental Science & Engineering
Frontiers of Environmental Science & Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
10.90
自引率
12.50%
发文量
988
审稿时长
6.1 months
期刊介绍: Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines. FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信