{"title":"Design principles for strong and tough hydrogels","authors":"Xueyu Li, Jian Ping Gong","doi":"10.1038/s41578-024-00672-3","DOIUrl":null,"url":null,"abstract":"Hydrogels are crosslinked polymer networks swollen with water. Owing to their soft and water-containing nature, hydrogels are promising materials for applications in many fields, such as biomedical engineering, soft robotics and environmental studies. One of the main obstacles to the practical application of hydrogels is their low mechanical strength and toughness. Since the 2000s, many breakthroughs in the development of mechanically strong and tough hydrogels have led to enormous advances in the study of soft materials and our understanding of their failure mechanisms. Research has also been conducted on long-term mechanical stability — that is, the cyclic fatigue resistance and self-strengthening properties of hydrogels — to enable their application as load-bearing materials. This Review provides a comprehensive overview of the design principles for tough hydrogels. Strategies to obtain self-growing and reinforced hydrogels that can adapt to their surrounding mechanical environment are also presented. Hydrogels are promising in various fields, but improving their mechanical properties is critical for certain applications. This Review comprehensively explores design principles to construct hydrogels with superior mechanical strength, toughness and fatigue resistance, and discusses self-growing and self-reinforced hydrogels.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 6","pages":"380-398"},"PeriodicalIF":79.8000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41578-024-00672-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels are crosslinked polymer networks swollen with water. Owing to their soft and water-containing nature, hydrogels are promising materials for applications in many fields, such as biomedical engineering, soft robotics and environmental studies. One of the main obstacles to the practical application of hydrogels is their low mechanical strength and toughness. Since the 2000s, many breakthroughs in the development of mechanically strong and tough hydrogels have led to enormous advances in the study of soft materials and our understanding of their failure mechanisms. Research has also been conducted on long-term mechanical stability — that is, the cyclic fatigue resistance and self-strengthening properties of hydrogels — to enable their application as load-bearing materials. This Review provides a comprehensive overview of the design principles for tough hydrogels. Strategies to obtain self-growing and reinforced hydrogels that can adapt to their surrounding mechanical environment are also presented. Hydrogels are promising in various fields, but improving their mechanical properties is critical for certain applications. This Review comprehensively explores design principles to construct hydrogels with superior mechanical strength, toughness and fatigue resistance, and discusses self-growing and self-reinforced hydrogels.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.