{"title":"The role of hydrothermal processes and the formation of the J-M reef and associated rocks of olivine-bearing zone I of the Stillwater Complex, Montana","authors":"A. R. Gupta, Alan E. Boudreau","doi":"10.1007/s00126-024-01267-2","DOIUrl":null,"url":null,"abstract":"<p>Several lines of evidence, including hydrous melt inclusions and unusually Cl-rich apatite, have been used to suggest that the reappearance of olivine and PGE-sulfide of the J-M Reef in the Stillwater Complex, Montana, is due to fluid infiltration and hydration melting. This study builds upon the hydration melting model using the programs MELTS and PELE with Stillwater bulk rock compositions for the original protolith. Cl-bearing phases are not modeled by MELTS and thus simple oxide mixtures of either a pure H<sub>2</sub>O or a H<sub>2</sub>O + Na<sub>2</sub>O “faux brine” are added to norite, gabbronorite, and melanorite protoliths at 1050 °C at 2 kbar pressure, conditions for which the nominally “dry” protolith is > 95% solid. Incongruent hydration melting results in up to 37% olivine produced in the melanorite. The olivine Fo content is a function of the partial melt retained on cooling, and ranges between 76 and 86, overlapping the natural range of olivine compositions observed in the rocks. Modeling with the PELE program, which includes a silicate liquid Cl component, sulfur species, and a more complex C-O–H-S fluid, suggests that, for CO<sub>2</sub>-rich fluids, fluid metal concentrations on the order of 25 ppm Pt, 75 ppm Pd, 0.03 wt.% Cu, and 0.20 wt.% Ni at a fluid/rock mass ratio of ~ 0.25 are needed to account for the observed ore grades. Sulfide and ore metals are readily remobilized for more H<sub>2</sub>O-rich fluids, consistent with heterogeneous distribution of sulfide and regionally variable ore grades.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"52 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01267-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Several lines of evidence, including hydrous melt inclusions and unusually Cl-rich apatite, have been used to suggest that the reappearance of olivine and PGE-sulfide of the J-M Reef in the Stillwater Complex, Montana, is due to fluid infiltration and hydration melting. This study builds upon the hydration melting model using the programs MELTS and PELE with Stillwater bulk rock compositions for the original protolith. Cl-bearing phases are not modeled by MELTS and thus simple oxide mixtures of either a pure H2O or a H2O + Na2O “faux brine” are added to norite, gabbronorite, and melanorite protoliths at 1050 °C at 2 kbar pressure, conditions for which the nominally “dry” protolith is > 95% solid. Incongruent hydration melting results in up to 37% olivine produced in the melanorite. The olivine Fo content is a function of the partial melt retained on cooling, and ranges between 76 and 86, overlapping the natural range of olivine compositions observed in the rocks. Modeling with the PELE program, which includes a silicate liquid Cl component, sulfur species, and a more complex C-O–H-S fluid, suggests that, for CO2-rich fluids, fluid metal concentrations on the order of 25 ppm Pt, 75 ppm Pd, 0.03 wt.% Cu, and 0.20 wt.% Ni at a fluid/rock mass ratio of ~ 0.25 are needed to account for the observed ore grades. Sulfide and ore metals are readily remobilized for more H2O-rich fluids, consistent with heterogeneous distribution of sulfide and regionally variable ore grades.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.