{"title":"Flow-geomechanics coupling constrains fault geometry in fluid-induced earthquakes","authors":"Faeze Ghazvini, Birendra Jha","doi":"10.1016/j.gete.2024.100563","DOIUrl":null,"url":null,"abstract":"<div><p>Post-mortem analysis of earthquakes induced by fluid extraction or injection is often complicated by the uncertainty in the location and geometry of the causative fault. The 2011 Lorca earthquake in southeast Spain is believed to be triggered by long-term groundwater withdrawal, causing slip along the Alhama de Murcia Fault (AMF) dipping northwest. However, the regional InSAR deformation data can be equally fit by AMF and an unmapped fault located approximately 5 km west of AMF and dipping southeast, which creates an ambiguity in the causative fault that hosted the earthquake. Here, we show that the assumptions of elastic dislocation, undrained deformation, and decoupling between flow and deformation processes contributed to the ambiguity, which can be resolved by conducting a fully coupled analysis that provides additional constraints on the problem. We test that hypothesis and propose that the Lorca earthquake was likely caused by the rupture of a southeast dipping fault plane, which is antithetic to AMF. We build a mechanistic model of groundwater withdrawal over the time period of interest (1960–2010) that includes pressure diffusion, aquifer contraction, crustal unloading, and basement expansion mechanisms. The model identifies the difference in pumping-induced loading of the two faults: poroelastic compression and down-dip shear on AMF vs. tension and up-dip shear on the antithetic fault. We demonstrate that two-way coupling between flow and deformation processes plays a crucial role in the natural selection of the earthquake-inducing fault and holds the potential to detect hidden faults in the case of anthropogenic triggering.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100563"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000303","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Post-mortem analysis of earthquakes induced by fluid extraction or injection is often complicated by the uncertainty in the location and geometry of the causative fault. The 2011 Lorca earthquake in southeast Spain is believed to be triggered by long-term groundwater withdrawal, causing slip along the Alhama de Murcia Fault (AMF) dipping northwest. However, the regional InSAR deformation data can be equally fit by AMF and an unmapped fault located approximately 5 km west of AMF and dipping southeast, which creates an ambiguity in the causative fault that hosted the earthquake. Here, we show that the assumptions of elastic dislocation, undrained deformation, and decoupling between flow and deformation processes contributed to the ambiguity, which can be resolved by conducting a fully coupled analysis that provides additional constraints on the problem. We test that hypothesis and propose that the Lorca earthquake was likely caused by the rupture of a southeast dipping fault plane, which is antithetic to AMF. We build a mechanistic model of groundwater withdrawal over the time period of interest (1960–2010) that includes pressure diffusion, aquifer contraction, crustal unloading, and basement expansion mechanisms. The model identifies the difference in pumping-induced loading of the two faults: poroelastic compression and down-dip shear on AMF vs. tension and up-dip shear on the antithetic fault. We demonstrate that two-way coupling between flow and deformation processes plays a crucial role in the natural selection of the earthquake-inducing fault and holds the potential to detect hidden faults in the case of anthropogenic triggering.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.