Simon Teves , Tobias Biermann , Arved Ziebehl , Jan Gerrit Eckert , Ole Hill , Panpan Xia , Merve Wollweber , Tammo Ripken , Nadja C. Bigall , Roland Lachmayer
{"title":"Active-mixing printhead for on-the-fly composition adjustment of multi component materials in Direct Ink Writing","authors":"Simon Teves , Tobias Biermann , Arved Ziebehl , Jan Gerrit Eckert , Ole Hill , Panpan Xia , Merve Wollweber , Tammo Ripken , Nadja C. Bigall , Roland Lachmayer","doi":"10.1016/j.addlet.2024.100217","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-Material Additive Manufacturing (MMAM) enables the grading of material properties and the integration of functions within printed parts. While most MMAM methods are limited to process single-component or pre-mixed multi-component materials, the in-process mixing and extrusion of multi-component materials enables innovative material properties and use cases. When processing liquid multi-component materials, the individual component streams need to be homogenized in-process, but the required volume in conventional passive mixing hinders rapid transitions in material composition. In this paper, a two component printhead is presented which combines an active mixing approach with a continuous composition adjustment for a third additive. The approach to control the mixing composition is to influence the hydrodynamic equilibrium of individual material streams before merging them near the point of extrusion. The printhead’s functionality is verified in terms of mixing homogeneity and transition speed between material compositions.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100217"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000264/pdfft?md5=8321dcf3b16587f2187170572a05c295&pid=1-s2.0-S2772369024000264-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-Material Additive Manufacturing (MMAM) enables the grading of material properties and the integration of functions within printed parts. While most MMAM methods are limited to process single-component or pre-mixed multi-component materials, the in-process mixing and extrusion of multi-component materials enables innovative material properties and use cases. When processing liquid multi-component materials, the individual component streams need to be homogenized in-process, but the required volume in conventional passive mixing hinders rapid transitions in material composition. In this paper, a two component printhead is presented which combines an active mixing approach with a continuous composition adjustment for a third additive. The approach to control the mixing composition is to influence the hydrodynamic equilibrium of individual material streams before merging them near the point of extrusion. The printhead’s functionality is verified in terms of mixing homogeneity and transition speed between material compositions.