Ryszard Deszcz , Małgorzata Głogowska , Marian Hotloś , Katarzyna Sawicz
{"title":"Hypersurfaces in spaces of constant curvature satisfying a particular Roter type equation","authors":"Ryszard Deszcz , Małgorzata Głogowska , Marian Hotloś , Katarzyna Sawicz","doi":"10.1016/j.geomphys.2024.105220","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>M</em> be a hypersurface isometrically immersed in an <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional semi-Riemannian space of constant curvature, <span><math><mi>n</mi><mo>></mo><mn>3</mn></math></span>, such that its shape operator <span><math><mi>A</mi></math></span> satisfies <span><math><msup><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mi>ϕ</mi><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>ψ</mi><mi>A</mi><mo>+</mo><mi>ρ</mi><mi>I</mi><mi>d</mi></math></span>, where <em>ϕ</em>, <em>ψ</em> and <em>ρ</em> are some functions on <em>M</em> and <em>Id</em> is the identity operator. The main result of this paper states that on the set <em>U</em> of all points of <em>M</em> at which the square <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of the Ricci operator <span><math><mi>S</mi></math></span> of <em>M</em> is not a linear combination of <span><math><mi>S</mi></math></span> and <em>Id</em>, the Riemann-Christoffel curvature tensor <em>R</em> of <em>M</em> is a linear combination of some Kulkarni-Nomizu products formed by the metric tensor <em>g</em>, the Ricci tensor <em>S</em> and the tensor <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of <em>M</em>, i.e., the tensor <em>R</em> satisfies on <em>U</em> some Roter type equation. Moreover, the <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>-tensor <span><math><mi>R</mi><mo>⋅</mo><mi>S</mi></math></span> is on <em>U</em> a linear combination of some Tachibana tensors formed by the tensors <em>g</em>, <em>S</em> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. In particular, if <em>M</em> is a hypersurface isometrically immersed in the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional Riemannian space of constant curvature, <span><math><mi>n</mi><mo>></mo><mn>3</mn></math></span>, with three distinct principal curvatures and the Ricci operator <span><math><mi>S</mi></math></span> with three distinct eigenvalues then the Riemann-Christoffel curvature tensor <em>R</em> of <em>M</em> also satisfies a Roter type equation of this kind.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001219","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let M be a hypersurface isometrically immersed in an -dimensional semi-Riemannian space of constant curvature, , such that its shape operator satisfies , where ϕ, ψ and ρ are some functions on M and Id is the identity operator. The main result of this paper states that on the set U of all points of M at which the square of the Ricci operator of M is not a linear combination of and Id, the Riemann-Christoffel curvature tensor R of M is a linear combination of some Kulkarni-Nomizu products formed by the metric tensor g, the Ricci tensor S and the tensor of M, i.e., the tensor R satisfies on U some Roter type equation. Moreover, the -tensor is on U a linear combination of some Tachibana tensors formed by the tensors g, S and . In particular, if M is a hypersurface isometrically immersed in the -dimensional Riemannian space of constant curvature, , with three distinct principal curvatures and the Ricci operator with three distinct eigenvalues then the Riemann-Christoffel curvature tensor R of M also satisfies a Roter type equation of this kind.
设 M 是等距浸没在恒曲率 (n+1)-dimensional semi-Riemannian space(n>3)中的超曲面,其形状算子 A 满足 A3=jA2+ψA+ρId,其中 j、ψ 和 ρ 是 M 上的一些函数,Id 是标识算子。本文的主要结果指出,在 M 的里奇算子 S 的平方 S2 不是 S 和 Id 的线性组合的所有点的集合 U 上,M 的黎曼-克里斯托弗曲率张量 R 是由 M 的度量张量 g、里奇张量 S 和张量 S2 形成的一些库尔卡尼-诺米祖乘积的线性组合,即张量 R 在 U 上满足一些罗特方程。此外,(0,4)张量 R⋅S 在 U 上是由张量 g、S 和 S2 形成的一些立花张量的线性组合。特别是,如果 M 是一个等距沉浸在 (n+1)-dimensional Riemannian space of constant curvature, n>3 的超曲面,具有三个不同的主曲率和三个不同特征值的利玛窦算子 S,那么 M 的 Riemann-Christoffel 曲率张量 R 也满足此类罗特方程。
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity