Tamanna Thakur, Maria Carretta, Dmitrii Komissarenko, Gurdial Blugan
{"title":"Advancements in DLP 3D printing: High strength alumina toughened zirconia ceramics for biomedical applications","authors":"Tamanna Thakur, Maria Carretta, Dmitrii Komissarenko, Gurdial Blugan","doi":"10.1016/j.oceram.2024.100601","DOIUrl":null,"url":null,"abstract":"<div><p>Digital Light Processing (DLP) enables intricate ceramic part production from photosensitive ceramic slurry. While ZrO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> are commonly studied, their composites are underexplored despite diverse applications. This study investigates fabricating high-strength, fully dense alumina-toughened zirconia (ATZ) parts using a low-cost desktop DLP printer designed for polymer printing. Various ATZ-based ceramic slurries (30, 35, 42.5 vol%) with different binders and dispersants were prepared and evaluated for curing and rheological properties. Promising formulations underwent debinding and sintering, resulting in homogenous microstructures with a well-distributed blend of the two phases. For the doped samples, SEM analysis revealed a good distribution of dopants and elongated dopant grains infused at higher temperatures. The 35 vol% ATZ exhibited exceptional average flexural strength of 1321 MPa, surpassing previous DLP-fabricated composites. This suggests no need for increased solid loading content. The findings demonstrate the potential of DLP in producing high-performance ceramic parts with tailored properties.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524000658/pdfft?md5=77c2ba5d4c84cdcaadccfbfe53f9f3f0&pid=1-s2.0-S2666539524000658-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524000658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital Light Processing (DLP) enables intricate ceramic part production from photosensitive ceramic slurry. While ZrO2 and Al2O3 are commonly studied, their composites are underexplored despite diverse applications. This study investigates fabricating high-strength, fully dense alumina-toughened zirconia (ATZ) parts using a low-cost desktop DLP printer designed for polymer printing. Various ATZ-based ceramic slurries (30, 35, 42.5 vol%) with different binders and dispersants were prepared and evaluated for curing and rheological properties. Promising formulations underwent debinding and sintering, resulting in homogenous microstructures with a well-distributed blend of the two phases. For the doped samples, SEM analysis revealed a good distribution of dopants and elongated dopant grains infused at higher temperatures. The 35 vol% ATZ exhibited exceptional average flexural strength of 1321 MPa, surpassing previous DLP-fabricated composites. This suggests no need for increased solid loading content. The findings demonstrate the potential of DLP in producing high-performance ceramic parts with tailored properties.