Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains.

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart
{"title":"Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains.","authors":"Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart","doi":"10.1162/evco_a_00350","DOIUrl":null,"url":null,"abstract":"<p><p>Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the \"performance gap\" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-41"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00350","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the "performance gap" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.

在组合领域利用新颖性搜索合成多样化和辨别性实例集。
为训练算法选择模型或了解算法在实例空间中的足迹而收集足够的实例数据是一项挑战。我们提出了一种生成合成实例的方法,这些实例经过定制,在属于预定义组合的目标算法方面表现良好,但在特征方面也具有多样性。我们的方法使用一种新颖性搜索算法,其线性加权适配函数可在新颖性和性能之间取得平衡,从而在算法的单次运行中生成大量具有多样性和鉴别性的实例。我们考虑了新颖性的两种定义:(1) 与求解器组合中的判别性能有关;(2) 与演化实例的特征有关。我们评估了所提出的方法在两个领域(knapsack 和 bin-packing)中生成多样化和辨别性实例的能力,并将其与另一种著名的质量多样化方法--表型精英多维档案(MAP-Elites)和一种只为辨别行为而进化的进化算法进行了比较。结果表明,新颖性搜索方法在空间覆盖率和生成实例的能力方面优于其竞争对手,而在目标求解器与组合中其余求解器之间 "性能差距 "的相对大小方面,新颖性搜索方法也具有多样性。此外,对于 Knapsack 领域,我们还证明了我们能够使用最先进的求解器组合,在现有基准未覆盖的实例空间区域生成新实例。最后,我们证明了该方法对不同求解器组合(随机方法、确定性启发式方法和最先进方法)的鲁棒性,从而进一步证明了该方法的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信