Using machine learning to increase access to and engagement with trauma-focused interventions for posttraumatic stress disorder.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ariella P Lenton-Brym, Alexis Collins, Jeanine Lane, Carlos Busso, Jessica Ouyang, Skye Fitzpatrick, Janice R Kuo, Candice M Monson
{"title":"Using machine learning to increase access to and engagement with trauma-focused interventions for posttraumatic stress disorder.","authors":"Ariella P Lenton-Brym, Alexis Collins, Jeanine Lane, Carlos Busso, Jessica Ouyang, Skye Fitzpatrick, Janice R Kuo, Candice M Monson","doi":"10.1111/bjc.12468","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Post-traumatic stress disorder (PTSD) poses a global public health challenge. Evidence-based psychotherapies (EBPs) for PTSD reduce symptoms and improve functioning (Forbes et al., Guilford Press, 2020, 3). However, a number of barriers to access and engagement with these interventions prevail. As a result, the use of EBPs in community settings remains disappointingly low (Charney et al., Psychological Trauma: Theory, Research, Practice, and Policy, 11, 2019, 793; Richards et al., Community Mental Health Journal, 53, 2017, 215), and not all patients who receive an EBP for PTSD benefit optimally (Asmundson et al., Cognitive Behaviour Therapy, 48, 2019, 1). Advancements in artificial intelligence (AI) have introduced new possibilities for increasinfg access to and quality of mental health interventions.</p><p><strong>Aims: </strong>The present paper reviews key barriers to accessing and engaging in EBPs for PTSD, discusses current applications of AI in PTSD treatment and provides recommendations for future AI integrations aimed at reducing barriers to access and engagement.</p><p><strong>Discussion: </strong>We propose that AI may be utilized to (1) assess treatment fidelity; (2) elucidate novel predictors of treatment dropout and outcomes; and (3) facilitate patient engagement with the tasks of therapy, including therapy practice. Potential avenues for technological advancements are also considered.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bjc.12468","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Post-traumatic stress disorder (PTSD) poses a global public health challenge. Evidence-based psychotherapies (EBPs) for PTSD reduce symptoms and improve functioning (Forbes et al., Guilford Press, 2020, 3). However, a number of barriers to access and engagement with these interventions prevail. As a result, the use of EBPs in community settings remains disappointingly low (Charney et al., Psychological Trauma: Theory, Research, Practice, and Policy, 11, 2019, 793; Richards et al., Community Mental Health Journal, 53, 2017, 215), and not all patients who receive an EBP for PTSD benefit optimally (Asmundson et al., Cognitive Behaviour Therapy, 48, 2019, 1). Advancements in artificial intelligence (AI) have introduced new possibilities for increasinfg access to and quality of mental health interventions.

Aims: The present paper reviews key barriers to accessing and engaging in EBPs for PTSD, discusses current applications of AI in PTSD treatment and provides recommendations for future AI integrations aimed at reducing barriers to access and engagement.

Discussion: We propose that AI may be utilized to (1) assess treatment fidelity; (2) elucidate novel predictors of treatment dropout and outcomes; and (3) facilitate patient engagement with the tasks of therapy, including therapy practice. Potential avenues for technological advancements are also considered.

利用机器学习技术提高创伤后应激障碍干预的可及性和参与度。
背景:创伤后应激障碍(PTSD创伤后应激障碍(PTSD)是一项全球性的公共卫生挑战。针对创伤后应激障碍的循证心理疗法(EBPs)可减轻症状并改善功能(Forbes 等人,Guilford Press, 2020, 3)。然而,获得和参与这些干预措施普遍存在一些障碍。因此,EBPs 在社区环境中的使用率仍然很低,令人失望(Charney 等人,《心理创伤》:理论、研究、实践和政策》,11,2019,793;Richards 等人,《社区心理健康杂志》,53,2017,215),而且并非所有接受创伤后应激障碍 EBP 治疗的患者都能获得最佳疗效(Asmundson 等人,《认知行为疗法》,48,2019,1)。人工智能(AI)的进步为提高心理健康干预措施的可及性和质量带来了新的可能性。目的:本文回顾了获得和参与创伤后应激障碍 EBPs 治疗的主要障碍,讨论了当前人工智能在创伤后应激障碍治疗中的应用,并为未来人工智能的整合提供了建议,旨在减少获得和参与的障碍:我们建议可利用人工智能来:(1)评估治疗的忠实性;(2)阐明治疗辍学和治疗结果的新预测因素;以及(3)促进患者参与治疗任务,包括治疗实践。此外,还考虑了技术进步的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信