Pharmacokinetic and Metabolomic Studies with a Promising Radiation Countermeasure, BBT-059 (PEGylated interleukin-11), in Rhesus Nonhuman Primates.

IF 2.5 3区 医学 Q2 BIOLOGY
Alana D Carpenter, Yaoxiang Li, Stephen Y Wise, Oluseyi O Fatanmi, Sarah A Petrus, Christine M Fam, Sharon J Carlson, George N Cox, Amrita K Cheema, Vijay K Singh
{"title":"Pharmacokinetic and Metabolomic Studies with a Promising Radiation Countermeasure, BBT-059 (PEGylated interleukin-11), in Rhesus Nonhuman Primates.","authors":"Alana D Carpenter, Yaoxiang Li, Stephen Y Wise, Oluseyi O Fatanmi, Sarah A Petrus, Christine M Fam, Sharon J Carlson, George N Cox, Amrita K Cheema, Vijay K Singh","doi":"10.1667/RADE-23-00194.1","DOIUrl":null,"url":null,"abstract":"<p><p>BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00194.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BBT-059, a long-acting PEGylated interleukin-11 (IL-11) analog that is believed to have hematopoietic promoting and anti-apoptotic properties, is being developed as a potential radiation medical countermeasure (MCM) for hematopoietic acute radiation syndrome (H-ARS). This agent has been shown to improve survival in lethally irradiated mice. To further evaluate the drug's toxicity and safety profile, 12 naïve nonhuman primates (NHPs, rhesus macaques) were administered one of three doses of BBT-059 subcutaneously and were monitored for the next 21 days. Blood samples were collected throughout the study to assess the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug as well as its effects on complete blood counts, cytokines, vital signs, and to conduct metabolomic studies. No adverse effects were detected in any treatment group during the study. Short-term changes in metabolomic profiles were present in all groups treated with BBT-059 beginning immediately after drug administration and reverting to near normal levels by the end of the study period. Several pathways and metabolites, particularly those related to inflammation and steroid hormone biosynthesis, were activated by BBT-059 administration. Taken together, these observations suggest that BBT-059 has a good safety profile for further development as a radiation MCM for regulatory approval for human use.

在恒河猴等非人灵长类动物中使用有望成为辐射对策的 BBT-059(PEG 化白细胞介素-11)进行药代动力学和代谢组学研究。
BBT-059 是一种长效 PEG 化白细胞介素-11(IL-11)类似物,据信具有促进造血和抗细胞凋亡的特性,目前正被开发为治疗造血急性辐射综合征(H-ARS)的潜在辐射医疗对策(MCM)。研究表明,这种药物能提高接受致命辐照的小鼠的存活率。为了进一步评估该药物的毒性和安全性,12 只天真的非人灵长类动物(NHPs,猕猴)皮下注射了 BBT-059 三种剂量中的一种,并在接下来的 21 天中接受监测。在整个研究过程中采集血样,以评估药物的药代动力学(PK)和药效学(PD)及其对全血计数、细胞因子、生命体征的影响,并进行代谢组学研究。研究期间,各治疗组均未发现不良反应。所有接受 BBT-059 治疗的组别在用药后都出现了代谢组学特征的短期变化,并在研究结束时恢复到接近正常的水平。一些途径和代谢物,特别是那些与炎症和类固醇激素生物合成有关的途径和代谢物,在服用 BBT-059 后被激活。综上所述,这些观察结果表明,BBT-059 具有良好的安全性,可进一步开发为辐射 MCM,供监管部门批准用于人体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信