Signal-to-noise ratio versus field strength for small surface coils.

IF 2.7 4区 医学 Q2 BIOPHYSICS
NMR in Biomedicine Pub Date : 2024-10-01 Epub Date: 2024-05-08 DOI:10.1002/nbm.5168
Rolf Pohmann, Nikolai I Avdievich, Klaus Scheffler
{"title":"Signal-to-noise ratio versus field strength for small surface coils.","authors":"Rolf Pohmann, Nikolai I Avdievich, Klaus Scheffler","doi":"10.1002/nbm.5168","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T<sub>1</sub> measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B<sub>0</sub> <sup>1.6-2.7</sup>, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B<sub>0</sub> <sup>2.0</sup> dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B<sub>0</sub> <sup>2.1</sup>. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5168"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5168","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.

小型表面线圈的信噪比与场强关系。
提高信噪比(SNR)是使用超高磁场 MRI 的主要原因。在此,我们研究了信噪比与磁场强度的关系,尤其是在使用小型表面线圈且线圈噪声不容忽视的小型动物应用中。我们在 3 到 14.1 T 的五个磁场强度下,使用 2.2 厘米的表面线圈,对含盐和不含盐的两种水样本进行了相同的发射和接收线圈设计。在一系列不同翻转角的破坏梯度回波图像中测量了信噪比,并根据一系列翻转角和 T1 测量值对饱和度进行了校正。此外,还测定并消除了接收链的噪声系数,以消除仪器依赖性。最后,根据互易原理确定线圈灵敏度,以获得最终信噪比。在进行线圈灵敏度校正之前,非导电样品的信噪比增长高度超线性,B0 为 1.6-2.7,取决于与线圈的距离,而导电样品的增长较小,在靠近表面线圈时呈线性增长,远离线圈时增长到 B0 2.0。经过灵敏度校正后,信噪比的增加与负载无关,B0 为 2.1。这项研究证实了信噪比随着场强的增加而呈超线性增长。与大多数采用较大线圈尺寸的人体测量相比,主要用于动物研究的较小表面线圈的线圈噪声更大,因此在高场强下的信噪比表现也不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信