Danicamtiv affected isometric force and cross-bridge kinetics similarly in skinned myocardial strips from male and female rats.

IF 1.8 3区 生物学 Q4 CELL BIOLOGY
Peter O Awinda, Blake J Vander Top, Kyrah L Turner, Bertrand C W Tanner
{"title":"Danicamtiv affected isometric force and cross-bridge kinetics similarly in skinned myocardial strips from male and female rats.","authors":"Peter O Awinda, Blake J Vander Top, Kyrah L Turner, Bertrand C W Tanner","doi":"10.1007/s10974-024-09669-5","DOIUrl":null,"url":null,"abstract":"<p><p>Myotropes are pharmaceuticals that have recently been developed or are under investigation for the treatment of heart diseases. Myotropes have had varied success in clinical trials. Initial research into myotropes have widely focused on animal models of cardiac dysfunction in comparison with normal animal cardiac physiology-primarily using males. In this study we examined the effect of danicamtiv, which is one type of myotrope within the class of myosin activators, on contractile function in permeabilized (skinned) myocardial strips from male and female Sprague-Dawley rats. We found that danicamtiv increased steady-state isometric force production at sub-maximal calcium levels, leading to greater Ca<sup>2+</sup>-sensitivity of contraction for both sexes. Danicamtiv did not affect maximal Ca<sup>2+</sup>-activated force for either sex. Sinusoidal length-perturbation analysis was used to assess viscoelastic myocardial stiffness and cross-bridge cycling kinetics. Data from these measurements did not vary with sex, and the data suggest that danicamtiv slows cross-bridge cycling kinetics. These findings imply that danicamtiv increases force production via increasing cross-bridge contributions to activation of contraction, especially at sub-maximal Ca<sup>2+</sup>-activation. The inclusion of both sexes in animal models during the formative stages of drug development could be helpful for understanding the efficacy or limitation of a drug's therapeutic impact on cardiac function.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-024-09669-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myotropes are pharmaceuticals that have recently been developed or are under investigation for the treatment of heart diseases. Myotropes have had varied success in clinical trials. Initial research into myotropes have widely focused on animal models of cardiac dysfunction in comparison with normal animal cardiac physiology-primarily using males. In this study we examined the effect of danicamtiv, which is one type of myotrope within the class of myosin activators, on contractile function in permeabilized (skinned) myocardial strips from male and female Sprague-Dawley rats. We found that danicamtiv increased steady-state isometric force production at sub-maximal calcium levels, leading to greater Ca2+-sensitivity of contraction for both sexes. Danicamtiv did not affect maximal Ca2+-activated force for either sex. Sinusoidal length-perturbation analysis was used to assess viscoelastic myocardial stiffness and cross-bridge cycling kinetics. Data from these measurements did not vary with sex, and the data suggest that danicamtiv slows cross-bridge cycling kinetics. These findings imply that danicamtiv increases force production via increasing cross-bridge contributions to activation of contraction, especially at sub-maximal Ca2+-activation. The inclusion of both sexes in animal models during the formative stages of drug development could be helpful for understanding the efficacy or limitation of a drug's therapeutic impact on cardiac function.

Abstract Image

Danicamtiv 对雄性和雌性大鼠带皮心肌条带的等长力和交叉桥动力学的影响相似。
肌注药物是最近开发或正在研究用于治疗心脏病的药物。肌注药物在临床试验中取得了不同程度的成功。对肌注药物的初步研究主要集中在与正常动物心脏生理机能失调的动物模型上--主要使用雄性动物。在本研究中,我们研究了达尼康肽(肌球蛋白激活剂中的一种)对雄性和雌性 Sprague-Dawley 大鼠透化(去皮)心肌带收缩功能的影响。我们发现,达尼康肽能增加雌雄大鼠在亚最大钙水平下的稳态等长力产生,从而提高收缩对 Ca2+ 的敏感性。达尼康肽不影响雌雄大鼠的最大 Ca2+激活力。正弦长度扰动分析用于评估粘弹性心肌僵硬度和跨桥循环动力学。这些测量数据并不因性别而异,数据表明达尼康肽减缓了跨桥循环动力学。这些研究结果表明,达尼康肽可通过增加交叉桥对激活收缩的贡献来增加产力,尤其是在亚最大 Ca2+ 激活时。在药物开发的形成阶段,将两性纳入动物模型有助于了解药物对心脏功能的疗效或限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信