{"title":"The Unification of Evolutionary Dynamics through the Bayesian Decay Factor in a Game on a Graph.","authors":"Arnaud Zlatko Dragicevic","doi":"10.1007/s11538-024-01299-9","DOIUrl":null,"url":null,"abstract":"<p><p>We unify evolutionary dynamics on graphs in strategic uncertainty through a decaying Bayesian update. Our analysis focuses on the Price theorem of selection, which governs replicator(-mutator) dynamics, based on a stratified interaction mechanism and a composite strategy update rule. Our findings suggest that the replication of a certain mutation in a strategy, leading to a shift from competition to cooperation in a well-mixed population, is equivalent to the replication of a strategy in a Bayesian-structured population without any mutation. Likewise, the replication of a strategy in a Bayesian-structured population with a certain mutation, resulting in a move from competition to cooperation, is equivalent to the replication of a strategy in a well-mixed population without any mutation. This equivalence holds when the transition rate from competition to cooperation is equal to the relative strength of selection acting on either competition or cooperation in relation to the selection differential between cooperators and competitors. Our research allows us to identify situations where cooperation is more likely, irrespective of the specific payoff levels. This approach provides new perspectives into the intended purpose of Price's equation, which was initially not designed for this type of analysis.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 6","pages":"69"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01299-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We unify evolutionary dynamics on graphs in strategic uncertainty through a decaying Bayesian update. Our analysis focuses on the Price theorem of selection, which governs replicator(-mutator) dynamics, based on a stratified interaction mechanism and a composite strategy update rule. Our findings suggest that the replication of a certain mutation in a strategy, leading to a shift from competition to cooperation in a well-mixed population, is equivalent to the replication of a strategy in a Bayesian-structured population without any mutation. Likewise, the replication of a strategy in a Bayesian-structured population with a certain mutation, resulting in a move from competition to cooperation, is equivalent to the replication of a strategy in a well-mixed population without any mutation. This equivalence holds when the transition rate from competition to cooperation is equal to the relative strength of selection acting on either competition or cooperation in relation to the selection differential between cooperators and competitors. Our research allows us to identify situations where cooperation is more likely, irrespective of the specific payoff levels. This approach provides new perspectives into the intended purpose of Price's equation, which was initially not designed for this type of analysis.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.