{"title":"Naphthoquinones and anthraquinones: Exploring their impact on acetylcholinesterase enzyme activity","authors":"Hatice Esra Duran, Şükrü Beydemir","doi":"10.1002/bab.2599","DOIUrl":null,"url":null,"abstract":"<p>The identification of novel acetylcholinesterase inhibitors holds significant relevance in the treatment of Alzheimer's disease (AD), the prevailing form of dementia. The exploration of alternative inhibitors to the conventional acetylcholinesterase inhibitors is steadily gaining prominence. Quinones, categorized as plant metabolites, represent a specific class of compounds. In this study, the inhibitory effects of various naphthoquinone derivatives, along with anthraquinone and its derivatives, on the acetylcholinesterase (AChE) enzyme were investigated for this purpose. An in vitro investigation was conducted to examine the effects of these compounds in order to clarify the possible mechanism of inhibition in the interaction between the enzyme and chemicals. In addition, an in silico investigation was carried out to understand the conceivable inhibitor binding process to the enzyme's active site. The acquired outcomes corroborated the in vitro results. The AChE enzyme was found to be effectively inhibited by both naphthoquinones and anthraquinones, with inhibition constant (<i>K</i><sub>I</sub>) values ranging from 0.014 to 0.123 μM (micormolar). The AChE enzyme was inhibited differently by this quinone and its derivatives. Although derivatives of naphthoquinone and anthraquinone exhibited a competitive inhibitory effect, derivatives of anthraquinone exhibited a noncompetitive inhibition effect. Furthermore, because it had the lowest <i>K</i><sub>I</sub> value of any of these substances, 1,5-dihydroxyanthraquinone (<b>1c</b>) was shown to be the most potent inhibitor. The findings will add to the body of knowledge on the creation of fresh, potent, and successful treatment approaches.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":"71 5","pages":"1079-1093"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bab.2599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bab.2599","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of novel acetylcholinesterase inhibitors holds significant relevance in the treatment of Alzheimer's disease (AD), the prevailing form of dementia. The exploration of alternative inhibitors to the conventional acetylcholinesterase inhibitors is steadily gaining prominence. Quinones, categorized as plant metabolites, represent a specific class of compounds. In this study, the inhibitory effects of various naphthoquinone derivatives, along with anthraquinone and its derivatives, on the acetylcholinesterase (AChE) enzyme were investigated for this purpose. An in vitro investigation was conducted to examine the effects of these compounds in order to clarify the possible mechanism of inhibition in the interaction between the enzyme and chemicals. In addition, an in silico investigation was carried out to understand the conceivable inhibitor binding process to the enzyme's active site. The acquired outcomes corroborated the in vitro results. The AChE enzyme was found to be effectively inhibited by both naphthoquinones and anthraquinones, with inhibition constant (KI) values ranging from 0.014 to 0.123 μM (micormolar). The AChE enzyme was inhibited differently by this quinone and its derivatives. Although derivatives of naphthoquinone and anthraquinone exhibited a competitive inhibitory effect, derivatives of anthraquinone exhibited a noncompetitive inhibition effect. Furthermore, because it had the lowest KI value of any of these substances, 1,5-dihydroxyanthraquinone (1c) was shown to be the most potent inhibitor. The findings will add to the body of knowledge on the creation of fresh, potent, and successful treatment approaches.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.