Protein lipoylation: mitochondria, cuproptosis, and beyond

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"Protein lipoylation: mitochondria, cuproptosis, and beyond","authors":"","doi":"10.1016/j.tibs.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.</p></div>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424000963","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.

蛋白质脂酰化:线粒体、杯突症及其他。
蛋白质脂酰化是一种关键的翻译后修饰(PTM),在线粒体功能中起着举足轻重的作用,也是通过铜中毒导致细胞死亡的关键因素。这种由铜驱动的新型细胞死亡途径是由过量的铜离子与脂酰化线粒体蛋白结合而激活的,从而破坏能量的产生并导致致命的蛋白聚集和细胞死亡。蛋白质脂酰化、细胞能量代谢和杯突变之间错综复杂的关系为调节细胞的基本功能提供了一条前景广阔的途径。这篇综述重点探讨了脂肪酰化的机制及其对细胞新陈代谢和杯突症的重大影响,强调了其中涉及的关键基因及其对人类疾病的影响。它为针对失调的细胞代谢进行治疗提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信