A coordinated switch in sucrose and callose metabolism enables enhanced symplastic unloading in potato tubers.

IF 2.5
Quantitative plant biology Pub Date : 2024-04-17 eCollection Date: 2024-01-01 DOI:10.1017/qpb.2024.4
Bas van den Herik, Sara Bergonzi, Yingji Li, Christian W Bachem, Kirsten H Ten Tusscher
{"title":"A coordinated switch in sucrose and callose metabolism enables enhanced symplastic unloading in potato tubers.","authors":"Bas van den Herik, Sara Bergonzi, Yingji Li, Christian W Bachem, Kirsten H Ten Tusscher","doi":"10.1017/qpb.2024.4","DOIUrl":null,"url":null,"abstract":"<p><p>One of the early changes upon tuber induction is the switch from apoplastic to symplastic unloading. Whether and how this change in unloading mode contributes to sink strength has remained unclear. In addition, developing tubers also change from energy to storage-based sucrose metabolism. Here, we investigated the coordination between changes in unloading mode and sucrose metabolism and their relative role in tuber sink strength by looking into callose and sucrose metabolism gene expression combined with a model of apoplastic and symplastic unloading. Gene expression analysis suggests that callose deposition in tubers is decreased by lower callose synthase expression. Furthermore, changes in callose and sucrose metabolism are strongly correlated, indicating a well-coordinated developmental switch. Modelling indicates that symplastic unloading is not the most efficient unloading mode per se. Instead, it is the concurrent metabolic switch that provides the physiological conditions necessary to potentiate symplastic transport and thereby enhance tuber sink strength .</p>","PeriodicalId":101358,"journal":{"name":"Quantitative plant biology","volume":"5 ","pages":"e4"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative plant biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2024.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the early changes upon tuber induction is the switch from apoplastic to symplastic unloading. Whether and how this change in unloading mode contributes to sink strength has remained unclear. In addition, developing tubers also change from energy to storage-based sucrose metabolism. Here, we investigated the coordination between changes in unloading mode and sucrose metabolism and their relative role in tuber sink strength by looking into callose and sucrose metabolism gene expression combined with a model of apoplastic and symplastic unloading. Gene expression analysis suggests that callose deposition in tubers is decreased by lower callose synthase expression. Furthermore, changes in callose and sucrose metabolism are strongly correlated, indicating a well-coordinated developmental switch. Modelling indicates that symplastic unloading is not the most efficient unloading mode per se. Instead, it is the concurrent metabolic switch that provides the physiological conditions necessary to potentiate symplastic transport and thereby enhance tuber sink strength .

蔗糖和胼胝质新陈代谢的协调转换可增强马铃薯块茎的交错卸载能力。
块茎诱导过程中的早期变化之一就是从凋落物卸载转换到合成物卸载。这种卸载模式的变化是否以及如何影响沉降强度,目前仍不清楚。此外,发育中的块茎还从能量代谢转变为基于贮藏的蔗糖代谢。在这里,我们通过观察胼胝质和蔗糖代谢基因的表达,结合凋落物和合成物卸载模型,研究了卸载模式和蔗糖代谢变化之间的协调及其在块茎下沉强度中的相对作用。基因表达分析表明,块茎中的胼胝质沉积会随着胼胝质合成酶表达量的降低而减少。此外,胼胝质和蔗糖代谢的变化密切相关,这表明发育过程中存在一个协调良好的转换过程。建模表明,交错卸载本身并不是最有效的卸载模式。相反,是同时进行的新陈代谢转换提供了必要的生理条件,从而增强了交感运输,进而提高了块茎的沉降强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信