Mathematical Models of Diffusion in Physiology.

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Physiological research Pub Date : 2024-08-30 Epub Date: 2024-04-22 DOI:10.33549/physiolres.935292
J Janáček
{"title":"Mathematical Models of Diffusion in Physiology.","authors":"J Janáček","doi":"10.33549/physiolres.935292","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":" ","pages":"S471-S476"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33549/physiolres.935292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.

生理学中的扩散数学模型。
扩散是由分子的混乱热运动引起的一种质量输运现象。利用分子局部浓度的进化微分方程而不是分子路径的完整信息,可以简化特定领域的输运研究[1]。流体混合物中的化合物倾向于通过扩散来消除空间浓度的不均匀性。在普通扩散中,传输速率与化合物的浓度梯度和扩散系数成正比。不断变化的浓度曲线 c(x,t) 是进化偏微分方程 deltac/deltat=DDeltac 的解,其中 D 是扩散系数,Delta 是拉普拉斯算子。方程的域可以是空间中的一个区域、平面或直线、流形(如嵌入空间的曲面)或图形。拉普拉斯算子对定义在给定域上的平滑函数进行运算。我们可以利用扩散模型完成多种任务,例如:a) 设计通过共聚焦显微镜精确测量质膜中受体流动性的方法[2];b) 评估发育中心脏小梁的复杂几何形状[3],以证明胚胎心室内的传导路径是由小梁的几何形状决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological research
Physiological research 医学-生理学
CiteScore
4.00
自引率
4.80%
发文量
108
审稿时长
3 months
期刊介绍: Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology. Authors can submit original, previously unpublished research articles, review articles, rapid or short communications. Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process. The articles are available in full versions as pdf files beginning with volume 40, 1991. The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信