Radiogenomic biomarkers for immunotherapy in glioblastoma: A systematic review of magnetic resonance imaging studies.

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2024-04-05 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae055
Prajwal Ghimire, Ben Kinnersley, Golestan Karami, Prabhu Arumugam, Richard Houlston, Keyoumars Ashkan, Marc Modat, Thomas C Booth
{"title":"Radiogenomic biomarkers for immunotherapy in glioblastoma: A systematic review of magnetic resonance imaging studies.","authors":"Prajwal Ghimire, Ben Kinnersley, Golestan Karami, Prabhu Arumugam, Richard Houlston, Keyoumars Ashkan, Marc Modat, Thomas C Booth","doi":"10.1093/noajnl/vdae055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunotherapy is an effective \"precision medicine\" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma.</p><p><strong>Methods: </strong>A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis.</p><p><strong>Results: </strong>Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed.</p><p><strong>Conclusions: </strong>Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Immunotherapy is an effective "precision medicine" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma.

Methods: A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis.

Results: Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed.

Conclusions: Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.

胶质母细胞瘤免疫疗法的放射基因组生物标志物:磁共振成像研究的系统回顾。
背景:免疫疗法是治疗多种癌症的有效 "精准医学 "疗法。胶质母细胞瘤患者潜在基因组的成像特征(放射基因组学)可作为肿瘤-宿主免疫装置的术前生物标志物。经过验证的生物标志物有可能在免疫疗法临床试验期间对患者进行分层,如果试验有效,还能促进个性化的新辅助治疗。随着全基因组测序数据使用的增加以及生物信息学和机器学习的进步,这种发展是有可能的。我们进行了一项系统综述,以确定胶质母细胞瘤免疫相关放射基因组生物标志物的开发和验证程度:我们按照 PRISMA 指南,使用 PubMed、Medline 和 Embase 数据库进行了系统性综述。结合 QUADAS 2 工具和 CLAIM 核对表进行了定性分析。PROSPERO 注册:CRD42022340968。提取的数据不够统一,无法进行荟萃分析:结果:共纳入 9 项研究,均为回顾性研究。从磁共振成像相关体积中提取的生物标志物包括表观弥散系数值、相对脑血量值和图像衍生特征。这些生物标记物与肿瘤细胞或免疫细胞的基因组标记物或患者存活率相关。大多数研究的偏倚风险较高,所进行的指标检测也存在适用性问题:放射基因组免疫生物标志物有可能为胶质母细胞瘤患者提供早期治疗方案。根据这些生物标志物进行分层的靶向免疫疗法有可能在临床试验中提供个体化的新辅助精准治疗方案。然而,目前还没有验证这些生物标志物的前瞻性研究,而且由于研究偏差,对这些生物标志物的解释也很有限,几乎没有证据表明它们具有普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信