Stefania Napolitano, Giulia Martini, Davide Ciardiello, Sara Del Tufo, Erika Martinelli, Teresa Troiani, Fortunato Ciardiello
{"title":"Targeting the EGFR signalling pathway in metastatic colorectal cancer.","authors":"Stefania Napolitano, Giulia Martini, Davide Ciardiello, Sara Del Tufo, Erika Martinelli, Teresa Troiani, Fortunato Ciardiello","doi":"10.1016/S2468-1253(23)00479-X","DOIUrl":null,"url":null,"abstract":"<p><p>Epidermal growth factor receptor (EGFR) and its activated downstream signalling pathways play a crucial role in colorectal cancer development and progression. After four decades of preclinical, translational, and clinical research, it has been shown that blocking the EGFR signalling pathway at different molecular levels represents a fundamental therapeutic strategy for patients with metastatic colorectal cancer. Nevertheless, the efficacy of molecularly targeted therapies is inescapably limited by the insurgence of mechanisms of acquired cancer cell resistance. Thus, in the era of precision medicine, a deeper understanding of the complex molecular landscape of metastatic colorectal cancer is required to deliver the best treatment choices to all patients. Major efforts are currently ongoing to improve patient selection, improve the efficacy of available treatments targeting the EGFR pathway, and develop novel combination strategies to overcome therapy resistance within the continuum of care of metastatic colorectal cancer.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/S2468-1253(23)00479-X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epidermal growth factor receptor (EGFR) and its activated downstream signalling pathways play a crucial role in colorectal cancer development and progression. After four decades of preclinical, translational, and clinical research, it has been shown that blocking the EGFR signalling pathway at different molecular levels represents a fundamental therapeutic strategy for patients with metastatic colorectal cancer. Nevertheless, the efficacy of molecularly targeted therapies is inescapably limited by the insurgence of mechanisms of acquired cancer cell resistance. Thus, in the era of precision medicine, a deeper understanding of the complex molecular landscape of metastatic colorectal cancer is required to deliver the best treatment choices to all patients. Major efforts are currently ongoing to improve patient selection, improve the efficacy of available treatments targeting the EGFR pathway, and develop novel combination strategies to overcome therapy resistance within the continuum of care of metastatic colorectal cancer.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.