{"title":"Using Routine Data to Improve Lesbian, Gay, Bisexual, and Transgender Health.","authors":"Catherine L Saunders","doi":"10.2196/53311","DOIUrl":null,"url":null,"abstract":"<p><p>The collection of sexual orientation in routine data, generated either from contacts with health services or in infrastructure data resources designed and collected for policy and research, has improved substantially in the United Kingdom in the last decade. Inclusive measures of gender and transgender status are now also beginning to be collected. This viewpoint considers current data collections, and their strengths and limitations, including accessing data, sample size, measures of sexual orientation and gender, measures of health outcomes, and longitudinal follow-up. The available data are considered within both sociopolitical and biomedical models of health for individuals who are lesbian, gay, bisexual, transgender, queer, or of other identities including nonbinary (LGBTQ+). Although most individual data sets have some methodological limitations, when put together, there is now a real depth of routine data for LGBTQ+ health research. This paper aims to provide a framework for how these data can be used to improve health and health care outcomes. Four practical analysis approaches are introduced-descriptive epidemiology, risk prediction, intervention development, and impact evaluation-and are discussed as frameworks for translating data into research with the potential to improve health.</p>","PeriodicalId":51757,"journal":{"name":"Interactive Journal of Medical Research","volume":"13 ","pages":"e53311"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interactive Journal of Medical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/53311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The collection of sexual orientation in routine data, generated either from contacts with health services or in infrastructure data resources designed and collected for policy and research, has improved substantially in the United Kingdom in the last decade. Inclusive measures of gender and transgender status are now also beginning to be collected. This viewpoint considers current data collections, and their strengths and limitations, including accessing data, sample size, measures of sexual orientation and gender, measures of health outcomes, and longitudinal follow-up. The available data are considered within both sociopolitical and biomedical models of health for individuals who are lesbian, gay, bisexual, transgender, queer, or of other identities including nonbinary (LGBTQ+). Although most individual data sets have some methodological limitations, when put together, there is now a real depth of routine data for LGBTQ+ health research. This paper aims to provide a framework for how these data can be used to improve health and health care outcomes. Four practical analysis approaches are introduced-descriptive epidemiology, risk prediction, intervention development, and impact evaluation-and are discussed as frameworks for translating data into research with the potential to improve health.