Adaptivity of a leaf-inspired wind energy harvester with respect to wind speed and direction.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Seyedali Sabzpoushan, Peter Woias
{"title":"Adaptivity of a leaf-inspired wind energy harvester with respect to wind speed and direction.","authors":"Seyedali Sabzpoushan, Peter Woias","doi":"10.1088/1748-3190/ad475a","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental wind is a random phenomenon in both speed and direction, though it can be forecasted to some extent. An example of that is a gust which is an abrupt, but short-time change in wind speed and direction. Being a free and clean source for small-scale energy scavenging, attraction of wind is rapidly growing in the world of energy harvesters. In this paper, a leaf-like flapping wind energy harvester is introduced as the base structure in which a short-span airfoil is attached to the free end of a double-deck cantilever beam. A flap mechanism inspired by scales on sharks' skin and a tail mechanism inspired by birds' horizontal tail are proposed for integration to the base harvester to make it adaptive with respect to wind speed and direction, respectively. The use of the flap mechanism increases the leaf flapping frequency by +2.1 to +11.5 Hz at wind speeds of 1.5 to 6.0 m s<sup>-1</sup>. Therefore, since the output power of a vibrational harvester is a function of vibration frequency, a figure of merit or an efficiency parameter related to the output power will increase, as well. On the other hand, if there is a misalignment between the harvester's heading and wind direction due to change of the latter one, the harvesting performance deteriorates. Although the base harvester can realign in certain ranges of sideslip angle at each wind speed, when the tail mechanism is integrated into that, it broadens the range of realignable sideslip angles at all the investigated wind speeds by up to 80∘.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad475a","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental wind is a random phenomenon in both speed and direction, though it can be forecasted to some extent. An example of that is a gust which is an abrupt, but short-time change in wind speed and direction. Being a free and clean source for small-scale energy scavenging, attraction of wind is rapidly growing in the world of energy harvesters. In this paper, a leaf-like flapping wind energy harvester is introduced as the base structure in which a short-span airfoil is attached to the free end of a double-deck cantilever beam. A flap mechanism inspired by scales on sharks' skin and a tail mechanism inspired by birds' horizontal tail are proposed for integration to the base harvester to make it adaptive with respect to wind speed and direction, respectively. The use of the flap mechanism increases the leaf flapping frequency by +2.1 to +11.5 Hz at wind speeds of 1.5 to 6.0 m s-1. Therefore, since the output power of a vibrational harvester is a function of vibration frequency, a figure of merit or an efficiency parameter related to the output power will increase, as well. On the other hand, if there is a misalignment between the harvester's heading and wind direction due to change of the latter one, the harvesting performance deteriorates. Although the base harvester can realign in certain ranges of sideslip angle at each wind speed, when the tail mechanism is integrated into that, it broadens the range of realignable sideslip angles at all the investigated wind speeds by up to 80∘.

叶片启发式风能收集器对风速和风向的适应性。
环境风在速度和方向上都是一种随机现象,但在一定程度上可以预测。阵风就是一个例子,它是风速和风向在短时间内的突然变化。风是一种免费的清洁能源,可用于小规模的能量收集,因此在能量收集器领域,风的吸引力正在迅速增长。本文介绍了一种叶片式拍动风能收集器,其基本结构是在双层悬臂梁的自由端连接一个短跨度翼面。受鲨鱼皮肤上的鳞片启发,提出了一种襟翼机构,受鸟类水平尾翼启发,提出了一种尾翼机构,这两种机构被整合到基础收割机中,使其分别适应风速和风向。在风速为 1.5 米/秒至 6.0 米/秒的情况下,使用襟翼机构可将叶片拍动频率提高 +2.1 至 +11.5 赫兹。因此,由于振动收割机的输出功率是振动频率的函数,与输出功率相关的优点或效率参数也会增加。另一方面,如果收割机的航向与风向因后者的变化而发生偏差,收割性能就会下降。虽然基座收割机在每种风速下都能在一定范围内调整侧倾角,但当尾部机构集成到基座收割机中时,在所有调查风速下可调整的侧倾角范围扩大了 80°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信