Modeling of a New Percutaneous Orthopedic Implant System to Control the Post-surgery Osseointegration Process.

Q3 Medicine
Mohamed Faoussi, Salim Bounou, Mohammed Wahbi
{"title":"Modeling of a New Percutaneous Orthopedic Implant System to Control the Post-surgery Osseointegration Process.","authors":"Mohamed Faoussi, Salim Bounou, Mohammed Wahbi","doi":"10.31661/jbpe.v0i0.2304-1612","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a mechanical model of a novel medical device designed to optimize the osseointegration process in upper and lower limb amputees, leading to the promotion of optimal rehabilitation. The medical device is developed to reduce the risk of implant failure, leading to re-amputation above the implant. The proposed model serves several purposes: 1) to guide the osseointegration process by providing electrical endo-stimulation directly to the bone-implant contact site, using an invasive electrical stimulation system, which is implanted in the bone permanently, 2) to locally transmit stem cells after implantation, without the need for opening the skin or perforating the bone, which is particularly useful for regenerative medicine after partial healing of the implant, 3) to transmit necessary nutrients from the bone, also without opening the skin or puncturing the bone, and 4) to combat infections by locally administering drugs after implantation.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2304-1612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a mechanical model of a novel medical device designed to optimize the osseointegration process in upper and lower limb amputees, leading to the promotion of optimal rehabilitation. The medical device is developed to reduce the risk of implant failure, leading to re-amputation above the implant. The proposed model serves several purposes: 1) to guide the osseointegration process by providing electrical endo-stimulation directly to the bone-implant contact site, using an invasive electrical stimulation system, which is implanted in the bone permanently, 2) to locally transmit stem cells after implantation, without the need for opening the skin or perforating the bone, which is particularly useful for regenerative medicine after partial healing of the implant, 3) to transmit necessary nutrients from the bone, also without opening the skin or puncturing the bone, and 4) to combat infections by locally administering drugs after implantation.

新型经皮骨科植入系统的建模,以控制术后骨结合过程。
本研究介绍了一种新型医疗设备的机械模型,该设备旨在优化上肢和下肢截肢者的骨结合过程,从而促进最佳康复。开发该医疗器械的目的是为了降低植入失败导致植入物上方再次截肢的风险。所提出的模型有几个目的1)通过使用永久植入骨内的侵入式电刺激系统,直接向骨与植入物接触部位提供电内刺激,从而引导骨结合过程;2)植入后在局部传输干细胞,无需打开皮肤或穿刺骨骼,这对于植入物部分愈合后的再生医学特别有用;3)同样无需打开皮肤或穿刺骨骼,即可从骨骼传输必要的营养物质;4)植入后通过局部给药防治感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Physics and Engineering
Journal of Biomedical Physics and Engineering Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.90
自引率
0.00%
发文量
64
审稿时长
10 weeks
期刊介绍: The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信