Chaimaa Tarzi, Guido Zampieri, Neil Sullivan, Claudio Angione
{"title":"Emerging methods for genome-scale metabolic modeling of microbial communities.","authors":"Chaimaa Tarzi, Guido Zampieri, Neil Sullivan, Claudio Angione","doi":"10.1016/j.tem.2024.02.018","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"533-548"},"PeriodicalIF":11.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tem.2024.02.018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.
期刊介绍:
Trends in Endocrinology and Metabolism (TEM) stands as a premier Reviews journal in the realms of metabolism and endocrinology. Our commitment is reflected in the publication of refined, concise, and highly impactful articles that delve into cutting-edge topics, encompassing basic, translational, and clinical aspects. From state-of-the-art treatments for endocrine diseases to groundbreaking developments in molecular biology, TEM provides comprehensive coverage.
Explore recent advancements in diabetes, endocrine diseases, obesity, neuroendocrinology, immunometabolism, molecular and cellular biology, and a myriad of other areas through our journal.
TEM serves as an invaluable resource for researchers, clinicians, lecturers, teachers, and students. Each monthly issue is anchored by Reviews and Opinion articles, with Reviews meticulously chronicling recent and significant developments, often contributed by leading researchers in specific fields. Opinion articles foster debate and hypotheses. Our shorter pieces include Science & Society, shedding light on issues at the intersection of science, society, and policy; Spotlights, which focus on exciting recent developments in the literature, and single-point hypotheses as Forum articles. We wholeheartedly welcome and encourage responses to previously published TEM content in the form of Letters.