A novel model of artificial intelligence based automated image analysis of CT urography to identify bladder cancer in patients investigated for macroscopic hematuria.
Suleiman Abuhasanein, Lars Edenbrandt, Olof Enqvist, Staffan Jahnson, Henrik Leonhardt, Elin Trägårdh, Johannes Ulén, Henrik Kjölhede
{"title":"A novel model of artificial intelligence based automated image analysis of CT urography to identify bladder cancer in patients investigated for macroscopic hematuria.","authors":"Suleiman Abuhasanein, Lars Edenbrandt, Olof Enqvist, Staffan Jahnson, Henrik Leonhardt, Elin Trägårdh, Johannes Ulén, Henrik Kjölhede","doi":"10.2340/sju.v59.39930","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate whether artificial intelligence (AI) based automatic image analysis utilising convolutional neural networks (CNNs) can be used to evaluate computed tomography urography (CTU) for the presence of urinary bladder cancer (UBC) in patients with macroscopic hematuria.</p><p><strong>Methods: </strong>Our study included patients who had undergone evaluation for macroscopic hematuria. A CNN-based AI model was trained and validated on the CTUs included in the study on a dedicated research platform (Recomia.org). Sensitivity and specificity were calculated to assess the performance of the AI model. Cystoscopy findings were used as the reference method.</p><p><strong>Results: </strong>The training cohort comprised a total of 530 patients. Following the optimisation process, we developed the last version of our AI model. Subsequently, we utilised the model in the validation cohort which included an additional 400 patients (including 239 patients with UBC). The AI model had a sensitivity of 0.83 (95% confidence intervals [CI], 0.76-0.89), specificity of 0.76 (95% CI 0.67-0.84), and a negative predictive value (NPV) of 0.97 (95% CI 0.95-0.98). The majority of tumours in the false negative group (n = 24) were solitary (67%) and smaller than 1 cm (50%), with the majority of patients having cTaG1-2 (71%).</p><p><strong>Conclusions: </strong>We developed and tested an AI model for automatic image analysis of CTUs to detect UBC in patients with macroscopic hematuria. This model showed promising results with a high detection rate and excessive NPV. Further developments could lead to a decreased need for invasive investigations and prioritising patients with serious tumours.</p>","PeriodicalId":21542,"journal":{"name":"Scandinavian Journal of Urology","volume":"59 ","pages":"90-97"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/sju.v59.39930","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To evaluate whether artificial intelligence (AI) based automatic image analysis utilising convolutional neural networks (CNNs) can be used to evaluate computed tomography urography (CTU) for the presence of urinary bladder cancer (UBC) in patients with macroscopic hematuria.
Methods: Our study included patients who had undergone evaluation for macroscopic hematuria. A CNN-based AI model was trained and validated on the CTUs included in the study on a dedicated research platform (Recomia.org). Sensitivity and specificity were calculated to assess the performance of the AI model. Cystoscopy findings were used as the reference method.
Results: The training cohort comprised a total of 530 patients. Following the optimisation process, we developed the last version of our AI model. Subsequently, we utilised the model in the validation cohort which included an additional 400 patients (including 239 patients with UBC). The AI model had a sensitivity of 0.83 (95% confidence intervals [CI], 0.76-0.89), specificity of 0.76 (95% CI 0.67-0.84), and a negative predictive value (NPV) of 0.97 (95% CI 0.95-0.98). The majority of tumours in the false negative group (n = 24) were solitary (67%) and smaller than 1 cm (50%), with the majority of patients having cTaG1-2 (71%).
Conclusions: We developed and tested an AI model for automatic image analysis of CTUs to detect UBC in patients with macroscopic hematuria. This model showed promising results with a high detection rate and excessive NPV. Further developments could lead to a decreased need for invasive investigations and prioritising patients with serious tumours.
期刊介绍:
Scandinavian Journal of Urology is a journal for the clinical urologist and publishes papers within all fields in clinical urology. Experimental papers related to clinical questions are also invited.Important reports with great news value are published promptly.