Evaluating the Effectiveness of a Generative Pretrained Transformer-Based Dietary Recommendation System in Managing Potassium Intake for Hemodialysis Patients.
Haijiao Jin, Qisheng Lin, Jifang Lu, Cuirong Hu, Bohan Lu, Na Jiang, Shaun Wu, Xiaoyang Li
{"title":"Evaluating the Effectiveness of a Generative Pretrained Transformer-Based Dietary Recommendation System in Managing Potassium Intake for Hemodialysis Patients.","authors":"Haijiao Jin, Qisheng Lin, Jifang Lu, Cuirong Hu, Bohan Lu, Na Jiang, Shaun Wu, Xiaoyang Li","doi":"10.1053/j.jrn.2024.04.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Despite adequate dialysis, the prevalence of hyperkalemia in Chinese hemodialysis (HD) patients remains elevated. This study aims to evaluate the effectiveness of a dietary recommendation system driven by generative pretrained transformers (GPTs) in managing potassium levels in HD patients.</p><p><strong>Methods: </strong>We implemented a bespoke dietary guidance tool utilizing GPT technology. Patients undergoing HD at our center were enrolled in the study from October 2023 to November 2023. The intervention comprised of two distinct phases. Initially, patients were provided with conventional dietary education focused on potassium management in HD. Subsequently, in the second phase, they were introduced to a novel GPT-based dietary guidance tool. This artificial intelligence (AI)-powered tool offered real-time insights into the potassium content of various foods and personalized dietary suggestions. The effectiveness of the AI tool was evaluated by assessing the precision of its dietary recommendations. Additionally, we compared predialysis serum potassium levels and the proportion of patients with hyperkalemia among patients before and after the implementation of the GPT-based dietary guidance system.</p><p><strong>Results: </strong>In our analysis of 324 food photographs uploaded by 88 HD patients, the GPTs system evaluated potassium content with an overall accuracy of 65%. Notably, the accuracy was higher for high-potassium foods at 85%, while it stood at 48% for low-potassium foods. Furthermore, the study examined the effect of GPT-based dietary advice on patients' serum potassium levels, revealing a significant reduction in those adhering to GPTs recommendations compared to recipients of traditional dietary guidance (4.57 ± 0.76 mmol/L vs. 4.84 ± 0.94 mmol/L, P = .004). Importantly, compared to traditional dietary education, dietary education based on the GPTs tool reduced the proportion of hyperkalemia in HD patients from 39.8% to 25% (P = .036).</p><p><strong>Conclusion: </strong>These results underscore the promising role of AI in improving dietary management for HD patients. Nonetheless, the study also points out the need for enhanced accuracy in identifying low potassium foods. It paves the way for future research, suggesting the incorporation of extensive nutritional databases and the assessment of long-term outcomes. This could potentially lead to more refined and effective dietary management strategies in HD care.</p>","PeriodicalId":50066,"journal":{"name":"Journal of Renal Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renal Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.jrn.2024.04.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Despite adequate dialysis, the prevalence of hyperkalemia in Chinese hemodialysis (HD) patients remains elevated. This study aims to evaluate the effectiveness of a dietary recommendation system driven by generative pretrained transformers (GPTs) in managing potassium levels in HD patients.
Methods: We implemented a bespoke dietary guidance tool utilizing GPT technology. Patients undergoing HD at our center were enrolled in the study from October 2023 to November 2023. The intervention comprised of two distinct phases. Initially, patients were provided with conventional dietary education focused on potassium management in HD. Subsequently, in the second phase, they were introduced to a novel GPT-based dietary guidance tool. This artificial intelligence (AI)-powered tool offered real-time insights into the potassium content of various foods and personalized dietary suggestions. The effectiveness of the AI tool was evaluated by assessing the precision of its dietary recommendations. Additionally, we compared predialysis serum potassium levels and the proportion of patients with hyperkalemia among patients before and after the implementation of the GPT-based dietary guidance system.
Results: In our analysis of 324 food photographs uploaded by 88 HD patients, the GPTs system evaluated potassium content with an overall accuracy of 65%. Notably, the accuracy was higher for high-potassium foods at 85%, while it stood at 48% for low-potassium foods. Furthermore, the study examined the effect of GPT-based dietary advice on patients' serum potassium levels, revealing a significant reduction in those adhering to GPTs recommendations compared to recipients of traditional dietary guidance (4.57 ± 0.76 mmol/L vs. 4.84 ± 0.94 mmol/L, P = .004). Importantly, compared to traditional dietary education, dietary education based on the GPTs tool reduced the proportion of hyperkalemia in HD patients from 39.8% to 25% (P = .036).
Conclusion: These results underscore the promising role of AI in improving dietary management for HD patients. Nonetheless, the study also points out the need for enhanced accuracy in identifying low potassium foods. It paves the way for future research, suggesting the incorporation of extensive nutritional databases and the assessment of long-term outcomes. This could potentially lead to more refined and effective dietary management strategies in HD care.
期刊介绍:
The Journal of Renal Nutrition is devoted exclusively to renal nutrition science and renal dietetics. Its content is appropriate for nutritionists, physicians and researchers working in nephrology. Each issue contains a state-of-the-art review, original research, articles on the clinical management and education of patients, a current literature review, and nutritional analysis of food products that have clinical relevance.