{"title":"Analysis of deformation mechanism of rainfall-induced landslide in the Three Gorges Reservoir Area: Piansongshu landslide.","authors":"Hui Wang, Jianhua Zou, Xinghua Wang, Peng Lv, Zefu Tan, Longfei Cheng, Qiang Wei, Binli Qin, Zhengchao Guo","doi":"10.1038/s41598-024-60590-w","DOIUrl":null,"url":null,"abstract":"<p><p>The Three Gorges Reservoir Area (TGRA) is characterized by unique geological features that increase its susceptibility to landslides. These slopes are especially prone to destabilization when influenced by external triggers like rainfall. This research focuses on the Piansongshu landslide within the TGRA, aiming at unraveling the complex internal deformation mechanisms of landslides triggered by rainfall and providing critical insights for their prevention and mitigation. The study begins with on-site geological surveys to meticulously examine the macroscopic signs and mechanisms of deformation. It then utilizes the GeoStudio numerical simulation software to assess the landslide's stability, focusing on the changes in internal seepage fields and stability under various rainfall scenarios. Results indicate that continuous rainfall leads to the formation of a temporary saturation zone on the slope, which gradually deepens. In regions with more pronounced deformation, the infiltration line at the leading edge of accumulation notably protrudes towards the surface. Notably, the stability coefficient of the secondary shear surface of the landslide fluctuates more significantly than that of the primary sliding surface. Higher rainfall intensity and longer duration are positively correlated with a more pronounced decrease in stability coefficients. The impact on stability also varies across different rainfall patterns. As rainfall infiltrates over time, the slope's safety factor gradually decreases. This reduction continues even post-rainfall, indicating a delayed restoration period before stability returns to a safe level. These results yield valuable data for forecasting and mitigating landslides.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"10005"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-60590-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Three Gorges Reservoir Area (TGRA) is characterized by unique geological features that increase its susceptibility to landslides. These slopes are especially prone to destabilization when influenced by external triggers like rainfall. This research focuses on the Piansongshu landslide within the TGRA, aiming at unraveling the complex internal deformation mechanisms of landslides triggered by rainfall and providing critical insights for their prevention and mitigation. The study begins with on-site geological surveys to meticulously examine the macroscopic signs and mechanisms of deformation. It then utilizes the GeoStudio numerical simulation software to assess the landslide's stability, focusing on the changes in internal seepage fields and stability under various rainfall scenarios. Results indicate that continuous rainfall leads to the formation of a temporary saturation zone on the slope, which gradually deepens. In regions with more pronounced deformation, the infiltration line at the leading edge of accumulation notably protrudes towards the surface. Notably, the stability coefficient of the secondary shear surface of the landslide fluctuates more significantly than that of the primary sliding surface. Higher rainfall intensity and longer duration are positively correlated with a more pronounced decrease in stability coefficients. The impact on stability also varies across different rainfall patterns. As rainfall infiltrates over time, the slope's safety factor gradually decreases. This reduction continues even post-rainfall, indicating a delayed restoration period before stability returns to a safe level. These results yield valuable data for forecasting and mitigating landslides.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.