Neuromorphic computing spiking neural network edge detection model for content based image retrieval.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ambuj, Rajendra Machavaram
{"title":"Neuromorphic computing spiking neural network edge detection model for content based image retrieval.","authors":"Ambuj, Rajendra Machavaram","doi":"10.1080/0954898X.2024.2348018","DOIUrl":null,"url":null,"abstract":"<p><p>In contemporary times, content-based image retrieval (CBIR) techniques have gained widespread acceptance as a means for end-users to discern and extract specific image content from vast repositories. However, it is noteworthy that a substantial majority of CBIR studies continue to rely on linear methodologies such as gradient-based and derivative-based edge detection techniques. This research explores the integration of bioinspired Spiking Neural Network (SNN) based edge detection within CBIR. We introduce an innovative, computationally efficient SNN-based approach designed explicitly for CBIR applications, outperforming existing SNN models by reducing computational overhead by 2.5 times. The proposed SNN-based edge detection approach is seamlessly incorporated into three distinct CBIR techniques, each employing conventional edge detection methodologies including Sobel, Canny, and image derivatives. Rigorous experimentation and evaluations are carried out utilizing the Corel-10k dataset and crop weed dataset, a widely recognized and frequently adopted benchmark dataset in the realm of image analysis. Importantly, our findings underscore the enhanced performance of CBIR methodologies integrating the proposed SNN-based edge detection approach, with an average increase in mean precision values exceeding 3%. This study conclusively demonstrated the utility of our proposed methodology in optimizing feature extraction, thereby establishing its pivotal role in advancing edge centric CBIR approaches.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2348018","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In contemporary times, content-based image retrieval (CBIR) techniques have gained widespread acceptance as a means for end-users to discern and extract specific image content from vast repositories. However, it is noteworthy that a substantial majority of CBIR studies continue to rely on linear methodologies such as gradient-based and derivative-based edge detection techniques. This research explores the integration of bioinspired Spiking Neural Network (SNN) based edge detection within CBIR. We introduce an innovative, computationally efficient SNN-based approach designed explicitly for CBIR applications, outperforming existing SNN models by reducing computational overhead by 2.5 times. The proposed SNN-based edge detection approach is seamlessly incorporated into three distinct CBIR techniques, each employing conventional edge detection methodologies including Sobel, Canny, and image derivatives. Rigorous experimentation and evaluations are carried out utilizing the Corel-10k dataset and crop weed dataset, a widely recognized and frequently adopted benchmark dataset in the realm of image analysis. Importantly, our findings underscore the enhanced performance of CBIR methodologies integrating the proposed SNN-based edge detection approach, with an average increase in mean precision values exceeding 3%. This study conclusively demonstrated the utility of our proposed methodology in optimizing feature extraction, thereby establishing its pivotal role in advancing edge centric CBIR approaches.

基于内容的图像检索的神经形态计算尖峰神经网络边缘检测模型。
当代,基于内容的图像检索(CBIR)技术已被广泛接受,成为终端用户从庞大的资源库中识别和提取特定图像内容的一种手段。然而,值得注意的是,绝大多数 CBIR 研究仍然依赖于线性方法,如基于梯度和导数的边缘检测技术。本研究探讨了在 CBIR 中整合基于生物启发的尖峰神经网络(SNN)的边缘检测技术。我们引入了一种创新的、计算效率高的基于 SNN 的方法,这种方法专门针对 CBIR 应用而设计,其性能优于现有的 SNN 模型,计算开销减少了 2.5 倍。所提出的基于 SNN 的边缘检测方法被无缝集成到三种不同的 CBIR 技术中,每种技术都采用了传统的边缘检测方法,包括 Sobel、Canny 和图像衍生物。我们利用 Corel-10k 数据集和作物杂草数据集进行了严格的实验和评估,这两个数据集是图像分析领域公认的、经常采用的基准数据集。重要的是,我们的研究结果表明,采用基于 SNN 的边缘检测方法后,CBIR 方法的性能得到了提高,平均精度值提高了 3%。这项研究最终证明了我们提出的方法在优化特征提取方面的实用性,从而确立了它在推进以边缘为中心的 CBIR 方法中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信