Individualized Technique Feedback for Instant Technique Improvements and Knee Abduction Moment Reductions - A New Approach for 'Sidestepping' ACL Injuries?
Kevin Bill, Patrick Mai, Lasse Mausehund, Sigurd Solbakken, Tron Krosshaug, Uwe G Kersting
{"title":"Individualized Technique Feedback for Instant Technique Improvements and Knee Abduction Moment Reductions - A New Approach for 'Sidestepping' ACL Injuries?","authors":"Kevin Bill, Patrick Mai, Lasse Mausehund, Sigurd Solbakken, Tron Krosshaug, Uwe G Kersting","doi":"10.26603/001c.116274","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sidestep cutting technique is highly individual and has been shown to influence knee joint loading. However, studies assessing whether individualized technique feedback improves technique and ACL injury-relevant knee joint loads instantly in a sport-specific task are lacking.</p><p><strong>Purpose: </strong>To determine the instant effects of individualized augmented technique feedback and instructions on technique and the peak external knee abduction moment (pKAM) in a handball-specific sidestep cut. Additionally, to determine the effects of technique modifications on the resultant ground reaction force and its frontal plane moment arm to the knee joint center.</p><p><strong>Study design: </strong>Controlled laboratory cohort study.</p><p><strong>Methods: </strong>Three-dimensional biomechanics of 48 adolescent female handball players were recorded during a handball-specific sidestep cut. Following baseline cuts to each side, leg-specific visual and verbal technique feedback on foot strike angle, knee valgus motion, or vertical impact velocity using a hierarchically organized structure accounting for the variables' association with performance was provided. Subsequently, sidestep cuts were performed again while verbal instructions were provided to guide technique modifications. Combined effects of feedback and instructions on technique and pKAM as well as on the resultant ground reaction force and its frontal plane moment arm to the knee joint center were assessed.</p><p><strong>Results: </strong>On average, each targeted technique variable improved following feedback and instructions, leading to instant reductions in pKAM of 13.4% to 17.1%. High inter-individual differences in response to feedback-instruction combinations were observed. These differences were evident in both the adherence to instructions and the impact on pKAM and its components.</p><p><strong>Conclusion: </strong>Most players were able to instantly adapt their technique and decrease ACL injury-relevant knee joint loads through individualized augmented technique feedback, thereby potentially reducing the risk of injury. More research is needed to assess the retention of these adaptations and move towards on-field technique assessments using low-cost equipment.</p><p><strong>Level of evidence: </strong>Level 3.</p>","PeriodicalId":47892,"journal":{"name":"International Journal of Sports Physical Therapy","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sports Physical Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26603/001c.116274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sidestep cutting technique is highly individual and has been shown to influence knee joint loading. However, studies assessing whether individualized technique feedback improves technique and ACL injury-relevant knee joint loads instantly in a sport-specific task are lacking.
Purpose: To determine the instant effects of individualized augmented technique feedback and instructions on technique and the peak external knee abduction moment (pKAM) in a handball-specific sidestep cut. Additionally, to determine the effects of technique modifications on the resultant ground reaction force and its frontal plane moment arm to the knee joint center.
Study design: Controlled laboratory cohort study.
Methods: Three-dimensional biomechanics of 48 adolescent female handball players were recorded during a handball-specific sidestep cut. Following baseline cuts to each side, leg-specific visual and verbal technique feedback on foot strike angle, knee valgus motion, or vertical impact velocity using a hierarchically organized structure accounting for the variables' association with performance was provided. Subsequently, sidestep cuts were performed again while verbal instructions were provided to guide technique modifications. Combined effects of feedback and instructions on technique and pKAM as well as on the resultant ground reaction force and its frontal plane moment arm to the knee joint center were assessed.
Results: On average, each targeted technique variable improved following feedback and instructions, leading to instant reductions in pKAM of 13.4% to 17.1%. High inter-individual differences in response to feedback-instruction combinations were observed. These differences were evident in both the adherence to instructions and the impact on pKAM and its components.
Conclusion: Most players were able to instantly adapt their technique and decrease ACL injury-relevant knee joint loads through individualized augmented technique feedback, thereby potentially reducing the risk of injury. More research is needed to assess the retention of these adaptations and move towards on-field technique assessments using low-cost equipment.