Study on efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic membrane bioreactors.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Wenyi Ren, Shoubin Zhang, Yutian Liu, Weipeng Ju, Guicai Liu, Kang Xie
{"title":"Study on efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic membrane bioreactors.","authors":"Wenyi Ren, Shoubin Zhang, Yutian Liu, Weipeng Ju, Guicai Liu, Kang Xie","doi":"10.1002/wer.11032","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O<sub>2</sub>·(g MLSS·h)<sup>-1</sup>), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11032","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.

陶瓷膜生物反应器中超声波控制膜堵塞的效率和机理研究。
近年来,陶瓷膜在膜生物反应器(MBR)中的应用越来越广泛。然而,膜污垢仍然是限制陶瓷 MBRs 大规模工程应用的核心问题。作为一种新颖的替代技术,超声波可用于控制膜污垢。本研究重点探讨了超声波控制陶瓷 MBRs 膜污垢的效率和机理。结果表明,超声波降低了 MBR 中的污泥浓度,污泥的平均粒径始终处于较高范围。系统的污泥活性稳定在 6-9 (mg O2-(g MLSS-h)-1),表明超声波没有破坏系统中微生物的活性。超声波组的胞外聚合物物质(EPS)略高于对照组,而可溶性微生物产物(SMP)含量相对稳定。超声波组的陶瓷膜对有机成分有部分截留作用。超声波的应用减缓了陶瓷膜亲水性的下降。膜表面的主要污染物以芳香环、杂芳环、炔烃等形式存在。超声波可去除膜表面的酰胺类物质。膜抗污性主要是由于膜孔堵塞造成的,占 75.53%。实践点:丰富超声波技术在膜防污方面的机理研究。在应用超声波的情况下,MBR 仍可正常运行。陶瓷膜达到结垢终点的时间是不使用超声波的 2.4 倍。膜堵塞的主要原因是孔隙堵塞,占 75.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信