Lexical Feedback in the Time-Invariant String Kernel (TISK) Model of Spoken Word Recognition.

Q1 Psychology
Journal of Cognition Pub Date : 2024-04-26 eCollection Date: 2024-01-01 DOI:10.5334/joc.362
James S Magnuson, Heejo You, Thomas Hannagan
{"title":"Lexical Feedback in the Time-Invariant String Kernel (TISK) Model of Spoken Word Recognition.","authors":"James S Magnuson, Heejo You, Thomas Hannagan","doi":"10.5334/joc.362","DOIUrl":null,"url":null,"abstract":"<p><p>The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK uses orders of magnitude fewer nodes and connections than TRACE. Although TISK performed remarkably similarly to TRACE in simulations reported by Hannagan et al., the original TISK implementation did not include lexical feedback, precluding simulation of top-down effects, and leaving open the possibility that adding feedback to TISK might fundamentally alter its performance. Here, we demonstrate that when lexical feedback is added to TISK, it gains the ability to simulate top-down effects without losing the ability to simulate the fundamental phenomena tested by Hannagan et al. Furthermore, with feedback, TISK demonstrates graceful degradation when noise is added to input, although parameters can be found that also promote (less) graceful degradation without feedback. We review arguments for and against feedback in cognitive architectures, and conclude that feedback provides a computationally efficient basis for robust constraint-based processing.</p>","PeriodicalId":32728,"journal":{"name":"Journal of Cognition","volume":"7 1","pages":"38"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11049678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/joc.362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

Abstract

The Time-Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, Magnuson & Grainger, 2013; You & Magnuson, 2018) is an interactive activation model with many similarities to TRACE (McClelland & Elman, 1986). However, by replacing most time-specific nodes in TRACE with time-invariant open-diphone nodes, TISK uses orders of magnitude fewer nodes and connections than TRACE. Although TISK performed remarkably similarly to TRACE in simulations reported by Hannagan et al., the original TISK implementation did not include lexical feedback, precluding simulation of top-down effects, and leaving open the possibility that adding feedback to TISK might fundamentally alter its performance. Here, we demonstrate that when lexical feedback is added to TISK, it gains the ability to simulate top-down effects without losing the ability to simulate the fundamental phenomena tested by Hannagan et al. Furthermore, with feedback, TISK demonstrates graceful degradation when noise is added to input, although parameters can be found that also promote (less) graceful degradation without feedback. We review arguments for and against feedback in cognitive architectures, and conclude that feedback provides a computationally efficient basis for robust constraint-based processing.

时间不变字符串内核(TISK)口语词汇识别模型中的词汇反馈。
口语单词识别的时不变串核(TISK)模型(Hannagan、Magnuson 和 Grainger,2013 年;You 和 Magnuson,2018 年)是一种交互激活模型,与 TRACE(McClelland 和 Elman,1986 年)有许多相似之处。然而,通过用时间不变的开放式双音节点取代 TRACE 中大多数特定时间节点,TISK 使用的节点和连接比 TRACE 少了很多。尽管在 Hannagan 等人的模拟报告中,TISK 的表现与 TRACE 非常相似,但最初的 TISK 实现并不包括词汇反馈,因此无法模拟自上而下的效应,而且在 TISK 中加入反馈可能会从根本上改变其表现。在这里,我们证明了当词法反馈被添加到 TISK 中时,它获得了模拟自上而下效应的能力,同时也没有失去模拟 Hannagan 等人测试的基本现象的能力。此外,在有反馈的情况下,当输入中添加噪声时,TISK 会表现出优美的退化,尽管可以找到在没有反馈的情况下也能促进(较少)优美退化的参数。我们回顾了认知架构中支持和反对反馈的论点,并得出结论:反馈为基于约束的稳健处理提供了一个计算高效的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cognition
Journal of Cognition Psychology-Experimental and Cognitive Psychology
CiteScore
4.50
自引率
0.00%
发文量
43
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信